
Namespaces: APLIVV vs. APL2

Rexford H. Swain
Independent Consultant

8 South Street
Washington, CT 06793

USA
Tel: 203-868-0131
Fax: 203-868-9970

Internet: rswain(jix.netcom.com

O.Abstract

This paper describes and contrasts the implementation of

namespaces in two popular combinations of APL dialects

and platforms: IBM’s APL2 (version 2 release 2) running

under VIWCMS, and Dyadic’s Dyalog APL/W (version

7.0) running under Microsoft Windows.

In a traditional APL workspace, localization is the only

mechanism available to isolate identifier names and values,

and it is extremely potent. While a fimction that localizes a

given name is executing, it is impossible to reference any

other definition of the same name.

Namespaces are a significant addition to an APL system.

They provide a way to “package” a collection of objects

(variables, defined fimctions, etc.), and insulate them from

the traditional workspace. A namespace co-exists with the

workspace, yet its object names and definitions are com-

pletely independent of the workspace. Namespaces can

help to organize rmd hide complexity in workspaces, avoid

name conflicts, and share code among applications.

IBM has offered namespaces in APL2 since 1987, whereas

Dyadic just recently introduced their facility. Both imple-

mentations provide encapsulation and name isolation

within a workspace. But they use quite different methods

to access objects in a namespace and store their initial

definitions. The merits of each approach are discussed. An

example is provided to illustrate how namespaces may be

used to simplifjr the implementation and improve the

functionality of workspace and fimction analysis tools.

Keywords: Namespace, localization, package.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
APL ’95, San Antonio, Texas, USA
C) 1995 ACM 0-89791 -722 -7/95/0006 ...$3.50

1. What’s a Namespace?

A traditional APL workspace contains a set of global

identifier names and definitions, When localized, a given

name may have a different value, but it is impossible to

reference the local and global values simultaneously —

only one set of names and values is available at any given

time. Furthermore, when a function finishes execution, the

values of its local variables are lost forever.

If you think of a traditional workspace as being “flat” or

“simple”, a workspace that contains a namespace could be

thought of as “nested”. One namespace can contain many

objects — and the names and values of those objects are

“local” to the namespace.

Another analogy is that objects in a traditional workspace

are like PC DOS files before the advent of directories,

when every tile was in what is now known as the “root”

directo~, and thus every tile name on an entire disk had to

be unique. Creating a namespace in a workspace is like

creating a sub-directory on a disk — it gives you the ability

to organize and isolate sets of APL objects.

Like nested arrays and DOS directories, namespaces may

be created within other namespaces, to an arbitrary depth.

And the traditional active workspace is itself a namespace

(which I refer to as the “root” namespace), analogous to the

outer-most level of a nested array or the root directory of a

disk. As with DOS disks, there is a “current” namespace,

and all namespaces except the root namespace have a

“parent” namespace.

Suppose you have a workspace containing a namespace

UTIL which contains, among other objects, a function

FOO. Everything behaves in the usual way until FOO is
executed. Then the APL system automatically switches the

current namespace from the root namespace to the UTIL

namespace. Here an entirely different set of names and

values becomes visible, and the names in the parent

(surrounding) namespace are no longer visible. While FOO

APL Quote Quad 193 Swain

is executing, any objects it and its subroutines refer to will

be retrieved fi-om the now-current W!’lL namespace.

When FOO returns to its caller, the current namespace is

automatically switched back to the root namespace. But

unlike the traditional localization mechanism, values in the

namespace are not lost — they are just not visible, and they

will appear again if and when the namespace is re-entered.

Namespace implementations also provide mechanisms for

fhnctions in one namespace to interact with the names and

values of objects in any other namespace. For instance,

you can reach “out” from a namespace to retrieve an object

from the parent nrtmespace.

(Technically, APL2 namespaces do not have names and do

not exist “within” a workspace. And they are not really

arranged in a parental hierarchy; IBM uses the term

“caller’s” namespace rather than “parent”. More about this

in section 5 below.)

In addition to any variables, functions, and operators that

you may save in a namespace, every namespace also

contains its own system variables. For example, each

namespace has its own 010 whose value is independent of

the parent (or any other) namespace.

Happily, namespaces are fast! Basically, the APL inter-

preter maintains more than one symbol table in a

workspace — one for each narnespace. When the system

encounters an object in different namespace, it’s just a

matter of switching a pointer to the appropriate symbol

table.

2, Why Use Namespaces?

Namespaces address the inconvenient “flatness” of the

traditional APL workspace, as well as the scope and

duration of object names and definitions. Some potential

uses and benefits are:

● Hide complexity:

Namespaces allow a workspace to be constructed so that

there are relatively few global names. The intricacy of

the structure of objects in a namespace is hidden from

direct view, and only certain high-level objects need be

visible or known to the surrounding application. (You

no longer have to see all 87 of your user-interface sub-

routines every time you do) FNS.) This can be particu-

larly helpful in situations where semi-skilled APL’ers

work in an application “shell”, doing some of their own

progr amming but fi-equently invoking more sophisticated

subroutines provided by an expert support staff.

● Share programs across applications:

Many applications use common code for user interface,

database access, and so on. Namespaces can be used to

“package” and segregate collections of such utilities,

allowing uniform and convenient access across

workspaces. Central maintenance and distribution of

utilities can be vastly simplified. Code that has been

packaged into a namespace is easy to reuse, providing

some of the benefits of “object-oriented” programming,

● Share programs among users:

In APL2, code in a single namespace can be installed

and shared by many users. And multiple namespaces

can overlay each other in storage while they are all

shared among many users, which can significantly

reduce overall system storage requirements.

● Avoid name conflicts:

Some utilities that are designed to be used in many

workspaces must go to obscene lengths to avoid possible

name conflicts if they use global variables and/or

subroutines. Namespaces alleviate this problem by

providing straightforward name isolation.

● Organize workspaces:

● Avoid shadowing:

Workspaces themselves serve to organize programs and

data. But as workspaces grew larger over the years, it
became clear to implementers that something more was

needed to organize objects within a workspace. Various

features have been added to many APL dialects, starting

with the APL\360) GRO UP command (now largely

abandoned). APL2 allows the use of “indirect” lists with

certain commands, such as) COPY. But these grouping

facilities typically only work with system commands.

Namespaces provide a more powerful and dynamic way

to impose order on increasingly large and overpopulated

workspaces.

Namespaces: APUW vs. APL2 194

A function that wants to examine other objects in the
active workspace is hampered by the possibility that its

local variables may “shadow” some of the global objects

that it tries to examine. Namespaces allow a fiction an

unobstructed view of the world outside itself.

● Retain persistent local values:

Functions and variables in a namespace are “local” to the

parent narnespace, but their deftitions and values are

static (lasting) rather than dynamic (fleeting) — they do

APL95

●

●

not disappear as execution leaves the namespace, and

changes may be)SAVEd across sessions.

Assist graphical user interface applications:

One of Dyadic’s prime motivations for implementing

namespaces was to bolster their Windows GUI support.

In a typical GUI application, there is a high degree of

autonomy between the various GUI objects (form, menu,

scrollbar, button, etc.) which comprise the user interface,

and it is important that each object have its own domain

in which to operate. APL/W GUI objects are now also

namespaces, so each can encapsulate all its processing

detail internally. For example, when a button is pressed,

the system switches to the button’s namespace in order

to execute the code and possibly update any status

information associated with the event. Narnespaces help

to alleviate “name pollution”, which can otherwise

become quite severe in this context. Previously, status

values which need to be maintained between successive

invocations of a callback iimction might have been kept

in numerous global variables, but now each can be

isolated in the appropriate GUI objecthunespace.

Implement and distribute run-only applications:

IBM’s namespaces are well-suited to the construction of

run-only applications because the stored namespace is

basically read-only, and access may be restricted to

certain objects, so entry points to the application may be

limited. And because APL2 namespaces reside in text

decks (or load module libraries), they can be delivered in

a way that allows system programmers to install them

using the same operating system facilities and tools used

for applications written in other languages. The APL2

Application Environment, IBM’s run-only interpreter,

can be used to process such namespaces.

~. Workspace Analysis Tools

My favorite use of namespaces is to avoid name conflicts

and shadowing in workspace and function analysis tools.

In traditional APL systems, you cannot bring a tool into a

workspace without fear of displacing at least one existing

object. And when the tool is executed, its local variables

might shadow some of the very global objects that it is

trying to examine. (An annoying corollary of Heisenberg’s

uncertainty principle: the process of measuring something

inevitably distorts the results.)

For instance, a traditional WSDOC tool cannot possibly

show everything in a workspace because the name of the

tool itself might conflict with an object already in the work-

space. (What if you want to use your WSDOC to look at my

WSDOC?) And once the tool starts executing, the probabil-

ity is even greater that its local variables will obscure some

global objects.1 This has lead many programmers to many

strange and inconvenient practices, especially the use of

extremely unusual local variable names.2 And, of course,

no matter how bizarre the naming convention, there is no

guarantee that a conflict will not arise.

As you will see, namespaces provide solutions to these

problems. But fwst, a look at the different ways that

Dyadic and IBM have implemented namespaces.

4. Dyalog APUW Namespaces

In APLIW, you use EINS to create a namespace and put

objects into it. For example:

) CLEAR
clear ws

SCALE+2
IIM’X ‘R+FOO A f f R+AxSCALE t

N+128

1 UTIL 1 CINS lFOO 1 f SCALE 1 ‘N’
. UTIL

(CINL 2 3 9), clNc ONL 2 3 9
FOO 3
N 2
SCALE 2
UTIL 9

13NS creates a namespace named UTIL (lefi argument) and

stores a list of objects (right argument) into it. Note that the

objects stored in the namespace are copied from the active

workspace, and that only specljically named user-defined

objects are included in the namespace. (System fictions

and variables, such as CI1O, are automatically included.)

The namespace now exists in the active workspace as a

single object with name class 9. You can manipulate

UTIL with many of the usual facilities, such as) COPY

and OEX.

CINS returns the fully-qualified name of the narnespace.

APL/W namespace hierarchies are very similar to DOS

directories, except that you use . as a separator, # to

indicate the root namespace, and # # to refer to the parent

of the current narnespace:

1

2

Some systems provide facilities for detecting these situations
(e.g., IJIDLOC in APL*PLUS), but generally all you can do is
announce the problem to the user — you still can’t actually do

what you wanted.

I would be delighted to never see another fhnction header like
“AAA;4AB; AAC”, ...! And, ironically, to stay sane while... , __

maintaining such tools, you need another tool to automate the
renaming of locals while converting a development version
into a production version!

APL Quote Quad 195 Swain

Relative to... Namespace DOS Directory

Root # . UTIL \ UTIL

Current UTIL UTIL

Parent ##. UTIL ..\ UTIL

To refer to an object in a namespace, you simply prefix an

object name with the name of the desired namespace, again

using the period as a separator:

Relative to... Object DOS File

Root # . UTIL .FOO \UTIL\FN. EXT

Current U!7’IL . FOO UTIL \FN. EXT

Parent ##. UTIL .FOO . . \UTIL\FN. EXT

You can also alter existing objects andcreate new objects

in the namespace by simply assigning them:

13F~ ‘R+FOO A’ ~R+A+SCALEf
N+32

SCALE+ I
FOO N

33
UTIL.FOO N

64
FOO UTIL.N

129
UTIL.FOO UTIL.N

256
UTIL.SCALE+IO 100
UTIL.N+9
UTIL.FOO N

320 3200
UTIL.FOO UTIL.N

90 900

System functions and variables maybe used in the same

way:

UTIL.UFX ‘R+IOTA A’ ‘R+~A’
UTIL.CIIO+O
EIIO

1
UTIL.IOTA 5

01234
M-+UTIL.ONL 2 3 9
(M,UTIL.ONC M),IJNC’ M

FOO 3 3
IOTA 3 0
N 22
SCALE 2 2

Note that the namespace object must exist in the active

workspace before it can be used:

)SAVE TEMP
TEMP saved Sun Ott 23 12:17:54 1994

) CLEAR
clear ws

UTIL.FOO 99

VALUE ERROR
UTIL.FOO 99

)COPYATEMP UTIL
TEMP saved Sun Ott 23 12:17:54 1994

(CINL 2 3 9),CINC RNL 2 3 9
UTIL 9

UTIL.FOO 5
.50 500

You may change the current namespace with the system

command)CS,liketheDOSCD/CHDIR command. This

gives you the convenience of working in immediate

execution mode within anamespace:

)LOAD TEMP
TEMP saved Sun Ott 23 12:17:54 1994

)FNS
FOO

)CS UTIL
. UTIL

) FNS
FOO IOTA

There is also a system command)NS that creates anew

namespace (without putting anything into it), like theDOS

MD/MKDIRcommand. 3 The fully-qualified name of the

namespace isreported:

)NS DEEPER
#.uTIL.DEEPER

!3NS candothis too- with a namespace specified in its

left argument andan empty right argument, it creates the

namespace without copying anything into it. Instead of the

)NScommandabove, we couldhave executed:

‘DEEPERf IINS f t
#.uTIL.DEEPER

4.1.Create/Change Objects lna Namespace

As you have seen, 13NS may be used to create a new

namespace and copy objects from the current namespace

into it. You may also directly create, re-detine, and erase

objects inanamespace:

)Cs #

#
UTIL.N+O n Change var
UTIL.B+52 n New var
UTIL.nFX ~R+AVG At ~R+(+/A)+pA’

3 The)CS and)NS commands are inconsistent with their
analogous DOScommands when usedwith no argument.)CS
changes the current namespace to the root namespace, whereas
CDqueries thecurrent directory and)NSqueries the current
namespace, whereas MD fails.

Namespaces:APL/W VS.APL2 196 APL95

UTIL.IIEX ‘SCALE’ Q Erase var
UTIL.0NL””2 3 9

B AVG DEEPER
N FOO

IOTA
UTIL.EIEX ‘DEEPER’ Q Erase ns

This changes N, creates B and AVG, and erases SCALE

and DEEPER in the VTILnamespace -without affecting

the current namespace.

4.2. Query Current Namespace

When both ONS arguments are empty, it queries the current

namespace:

!lDNS,,

#

) C’S UTIL
. UTIL

llnNstl

. UTIL

4.3. WSDOC Using APUW

Let’s take a look at how you might use APL/W to write and

then invoke a simplified workspace listing tool. The easiest

approach is to write the code so that it refers to its parent

namespace, and then store the main fi,mction and all

required subroutines into a namespace. Before defining the

functions, we use)NS to create a new namespace, and then

) C’S make it the current narnespace:

) CLEAR
clear ws

)NS DOC
#.DOC

]CS DOC
#.DOC

V WSDOC; M;V
[11 0+’ Workspace: 1, 13WSID

[21 U+ ’Namespace: ‘ , ‘ ‘ ##. UNS ‘ ‘

[31 M+##. oNL 3 4 ~ Names matrix
[41 V++M ~ Nested vector
[51 WSDISP”” V n Display each

v

V WSDISP N
[11 0+* f n Blank line
[21 O+tv ,,N Q Show name
[31 n+#i+. ncR N R Definition

v

)SAVE TOOLS

TOOLS saved Mon Ott 24 12:06:31 1994

To use WSDOC, you must first copy the DOCnarnespace

into the target workspace, potentially displacing one

existing object (e.g., a variable named DOC would be

clobbered). This is nothing new to most APL’ers, and at

least we still did not have to bend over backwards within

WSDOCto avoid shadowing.

)LOAD MYAPP
MYAPP saved Mon Ott 24 11:59:14 1994

)COPY TOOLS DOC
TOOLS saved Mon Ott 24 12:06:31 1994

DOC.WSDOC
Workspace: MYAPP
Namespace: #
. ..function listings. . .

We invoke WSDOC directly from its narnespace.4 Once

WSDOC starts executing (inthe DOC namespace), it tells

CINL to look out to its parent namespace for a list of all

defined fimctions and operators. (Actually, it executes

UNLinthe parent namespace.) Inthisexample, the parent

of DOC kthe root, but since both CINL and OCR refer to

the parent (rather than theroot) namespace, WSDOC will

document the current namespace (the one that DOC was

copied into). T&is usefulbe causeyo umightwantto run

WSDOC in a workspace where)CS has been used to

change the current narnespace to something other than the

root namespace.

4.4. Using the Session Namespace

APLIW has a special system narnespace named USE that is

used by the session manager and is therefore always5

available. Because it survives)LOAD and)CLEAR, it is

a very handy place to store development tools.

You may store objects into the session namespace in the

usual way, but to save thenamespace permanently (so that

it will survive)OFF’), you must choose save horn the

session menu.

We can copy WSDOC and its subroutine into the session

namespace without re-writing the fhnctions:

)LOAD TOOLS
TOOLS saved Mon Ott 24 12:06:31 1994

]CS DOC
#.DOC

‘USE’ ONS ‘ WSDOC’ ‘ WSDISP’
nsE

4 Alternatively, you could first)CD DOC and then just type
WSDOG.

5 Actually, thetlSE nmnespace isahnosta lwaysa vailable. One
instance when it is not available is when executing the run-time
version of APLIW, so it is not a good place to keep utilities
required by an application that may eventually be distributed as
a stand-alone product.

APL Quote Quad 197 Swain

Then we can invoke WSDUC at any time:

)LOAD MYAPP
MYAPP saved Mon Ott 24 11:59:14 1994

CISE . WSDOC
Workspace: MYAPP
flame space: #
. . function listings. . .

Since we have exploited the always-available nature of the

CISE namespace, we can run WSDOCfiorn anywodqace

without having to)COPYanythingfust. And because we

invoke it directly from llSE, not even a single name in the

target workspace is added, displaced, or shadowed!

But here’s the bad news: EWE. WSDOC executes CINL and

OCR in its parent namespace, and since the parent of the

USE namespace is the root namespace, it will always
examine the root namespace. So, as it stands, we cannot

use WSDOC from USE to document a current non-root

namespace.

In order to make our tool document any current namespace,

we must exploit an APL/W GUI query:

‘ USE’ nw~ f CurSpace t

C!WG gets Windows object properties. Here we ask for the

CurSpaceb property of the Ek7E7 object. When executed in

the USE narnespace, this returns the namespace that it was

invoked jiom (as opposed to its parent), which is exactly

what we need:

) (7s nsE
!3SE

v WSDOC’2; M; NS; V

[11 n+ f Workspace: ‘ , UWSID

[21 NS+ * USE J flwG ‘ CurSpace’

[31 0+’ Namespace: ‘ , NS
[41 M+kNS, ~ . ONL 3 4 ‘ Q Names matrix
[51 V++M 9 Nested vector
[6] WSDISP2 ““ v R Display each

v

V WSDISP2 N
[11 o+, f o Blank line
[21 ❑+,V ‘ ,N Q Show name

[31 O+&NS, ‘ .UCR N’ e Definition
v

6 The CurSpace property is not documented, but I noticed it
being used in the CIISE. WS’DOCnamespace that is supplied
with APL/W.

7 llSEis treated as aspecial system GUI object; it is the only
object with type Session.

Namespaces: APUW vs. APL2 198

This revised tool allows us to document a non-root current

namespace:

)LOAD TooLs

TOOLS saved Mon Ott 24 12:06:31 1994
)CS DOG

#.DOC
USE. WSDOC2

Workspace: TOOLS
Namespace: #.Doc

function listings.

Of course, you do need to beware of name conflicts within

the llSEnarnespace. (What if two developers give youa

WSDOC tool and both suggest that they be placed in USE?)

It would be safer to store such tools in separate namespaces

inside the session namespace:

)CS USE
CISE

‘REX’ EINS f WSDOC2 ‘ f WSDISP2 f

USE . REX
)ERASE WSDOC2 WSDISP2
)LOAD TOOLS

TOOLS saved Mon Ott 24 12:06:31 1994
)CS DOC

#.DOC
EL9E. REX. WSDOC2

Workspace: TOOLS
Namespace: #.DOC
. . . function listings. . .

4.5. Using Assigned Functions

If you are willing to displace a name in your current

namespace, you may take advantage of Dyadic’s assignable

fiction feature and create an “alias” whose name may be

more convenient to type.

Suppose you have a function named XREF stored in a

namespace named UTIL within the USE namespace. In

any workspacelnamespace, you could then execute:

nNC”” ’XREF’ tFoof

03

XREF4JSE.UTIL .XREF

nNC””’XREF’ fFoof
33

XREF ‘FOO’
. . . cross reference listing. . .

Unfortunately, this tectilque will not work for WSDOC

because itisniladic — only monadic and dyadic functions
may be assigned in this way.

The definition of an assigned fi.mction is not dynamic — it

is fixed at the time ofassigmnent (a copy of the target

fimctionis stored in the current narnespace of your active

APL95

workspace). So if you change XREF in the IISE. UTIL

namespace, the assigned version of XREF will not change.

Depending on your perspective, this behavior might be

considered a problem or an advantage.

5. IBM APL2 Namespaces

In APL2, you use an external iimction (supplied with the

product) named PACKAGE to create a namespace from a

saved workspace:

) CLEAR
CLEAR WS

SCALE-+2

CIFX ‘ R+FOO A ‘ ~R+A xSCALE ~
FOO

N+128

(CINL 2 3), CINC UNL 2 3
FOO 3
N 2
SCALE 2

) SA VE TEMP
1994-10-23 10.43.38 (GMT)

) CLEAR
CLEAR WS

3 11 QNA ‘PACKAGE’
1

) FNS
PACKAGE

PACKAGE ‘TEMP’
TEMP TEXT A

LUVAk used to access (game gssociate] the supplied routine

PACKAGE via processor 118, and returns a 1, which

indicates that theassociation wassuccessfid. PA CKAGEk

then used to create a narnespace fi-om the workspace

TEMP. Note that thenamespace iscreated fi-om the saved

(not active) workspace, and that the entire saved workspace

(not just a set of specified objects] ispackaged into the

ruunespace. The rmmespace now exists in a CMS9 file

whose name is returned by PACKAGE and is based on the

saved workspace name. (If this file already exists, it will be

overwritten without warning.)

But our new namespace is not yet available for use in any

workspace — to access objects in a namespace, you must

first make associations between a workspace and the

namespace.

In APL2, the active workspace is like a namespace, but not

quite — there is not necessarily a saved and/or packaged

version of the active workspace. IBM makes a nice

distinction here, introducing the term “namescope”. Each

namespace and the active workspace contains its own

namescope. Each namescope contains a distinct set of

objects that are known and usable in that namescope.

To use an object in your namespace you must first use IINA

again to establish an association between a name in your

active workspace (current namescope) and a name in the

namespace. This time the left argument specifies the name

of the namespace and processor 11, and the right argument

specifies the name of the object. The namespace can be

accessed from any workspacelnamescope, without using

system commands:

) CLEAR
CLEAR WS

‘TEMPt 11 ilNA ‘FOOJ
4
L

)FNS
FOO

N+32

FOO N

64

Your active workspace now contains two namescopes: one

based on the TEMP namespace, and the “root” (which is

the current namescope). While FOO is executing, the

TEMP namescopel” is current and its caller is the root. The

root namescope can always be made the current namescope

by executing) RESET,

In IBM terminology, the “current” namescope is the

namescope in which execution is currently taking place,

and the “caller’ s“ namescope is the namescope from which

the current namescope was entered. APL2 namespaces are

not arranged in a parental hierarchy; it is better to think of

them as parallel,

5.1. Aliases

If you want to access an object from a namespace, but that

object’s name conflicts with an object name in the current

namescope, you must declare an “alias”. You do this by

specifying two names in the right argument of CINA: first

the alias that you want to use in the current namescope, and

then the original name in the target namespace:

g Processor 11 provides access to objects outside the active
workspace: either objects in APLZ namespaces or routines
written in other languages. The 3 is a name class, telling
processor 11 to look for a function.

9 This all works similarly under MVS/TSO too, but I’m sticking
with WWCMS for these examples.

10 Actually, in APL2, neither namespaces nor narnescopes have
names — a file containing a namespace definition has a name,
but the narnespace itself is unnamed. But personally, because
the file has a name, I find it easier to think of the namespace as
having the same name.

APL Quote Quad 199 Swain

) VARS
N

N
32

ITEMPI 11 ONA lPN N~
J.

) VARS

N PN

PN

128

FOO N PN

64 256

You must also use an alias to invoke a system function or

variable in the namespace:

fTEMPf 11 ONA~fNL CINL’ ‘NC CINC’

11

(CINL 2 3),0NC CINL 2 3
FOO 3

N2

NC’ 3

NL 3
PN 2

(NL 2 3), NCNL 2 3
FOO 3
N 2
SCALE 2

5.2. Save Changes In a Namespace

In APL2, namespaces do not exist within the workspace.

Intermediate results, modified objects, andthe name table

consume workspace storage, but all other objects are totally

outside the active workspace. Any changes that you make

to objects inthe namespace are “local”to thenamespacej

and will be saved along with the active workspace by a

)SAVE command. However, the stored copy of the

external namespace is not changed:

1TEMPf 11 CINA ‘SCALE’

1

SCALE+IO 100

)SAVE TEMPSAVE

1994-10-23 13.47.02 (GMT)

) CLEAR

CLEAR WS

‘TEMPt 11 EINA ‘FOOf

i

FOO 8

16

)LOAD TEMPSAVE
Saved 1994-10-23 13.47.02 (GMT)

FOO 8
80 800

If the external namespace ischanged (that is, ifits source

workspace is re-)SAVEd and re-PACKAGEd), then the

next time the application workspace is loaded, any objects

associated with the namespace will be re-initialized horn

the external namespace as soon as they are used, and the

changes that were in the active workspace’s copy of the

namespace will be lost:

)LOAD TEMPSAVE
Saved 1994-10-23 13.47.02 (GMT)

FOO 8

80 800

)LOAD TEMP

Saved 1994-10-23 10.43.38 (GMT]

SCALE-+4

) SA VE

1994-10-23 13.52.51 (GMT)

3 11 DNA ‘PACKAGE’
.
.L

PACKAGE ‘TEMP’

TEMP TEXT A

)LOAD TEMPSAVE
Saved 1994-10-23 13.47.02 (GMT)

FOO 8
32

This characteristic can be somewhat unsettling when first

encountered, but it is very helpful in maintaining utility

fimctions that are used in many applications. For instance,

if you enhance your user-interface utilities and then re-

package their namespace, all saved workspaces that use the

utilities viatheir namespace would then automatically start

accessing the new versions.

5.3. Create/Change Objects In a Namespace

You cannot directly manipulate objects in an APL2

namespace — you must reach into the namespace by

associating with a system function (or previously-defined

and packaged user-defined function) and then use that

function to do the work.

Defining a new function and erasing an existing object in a

namespace are straightforward: use an alias for ~FX and

CIEX in the namespace:

‘TEMP~ 11 llNA~f FX llFXt ‘EX EEX’

11
Fx ,R+AvG Al !R~(+/A)+pA’

A VG
EX ‘SCALE’

1

And as wehave already seen, youmay change thevalueof

an existing variable in anamespaceby associating with it

and then simply re-assigning it:

‘TEMPi 11 flNA ‘N!
.

Namespaces: APL/W vs. APL2 200 APL95

Creating a new variable in a namespace is trickier because

there is no name thereto associate with. APL2 does not

allow you to associate an alias with the assignment arrow

or anyprimitive function (such as 4)11; you can only asso-

ciate with named objects. Again, a system function is

calledfo~ ClEC12is typically used foradhoc work like this:

lTEMPt 11 ONA ‘EC llEC!
1

SINK*EC ‘B+52’

5.4. Query Current Namespace

The external fhnction QNS (supplied by IBM) maybe used

to query the current namespace. 13 It takes a mandatory

right argument of zero. 14 The name of the root namespace

is returned as an empty vector:

3 11 CINA ‘QNS’
1

Q+QNs ~

2 flTF15 ‘ Q ‘
Q+, , 11

What does QNS return when executed f?om a namespace?

This would have been easier to demonstrate if we had

defined it before packaging the workspace TEMP. Instead

we must now reach into the rtamespace with two system

fbnctions aliases, first defining QNS (with CINA) and then

executing it (with !lEC), so that both the association and

execution take place in the namespace:

!TEMPf 11 IJNA !NA CINAf

1

3 11 NA ‘QNS’

1

Q+3zEC ‘QNS O ‘

2 OTF ‘Q’

Q+ ’TEMP’ 11

Note that QNS returns precisely the left argument that we

need to UNA our way into the namespace.

11

12

13

14

15

Similarly, APL/W doesn’t permit anything like iVS. Q-Y.

R+OEC X performs “execute controlled” of expression X, the

third item of R is the result of QX (or an error message).

More precisely, QiVS queries the left argument of ONA of the

function that was used to enter the current namescope,

Presumably, the purpose of this unused argument is simply to
avoid having &YVS be niladic. Future extensions to a monadic
QNS are possible without changing its syntax.

~+2 DTF ! X ! retnrns the “transfer form” of obiect X. 4R.
may be used to recreate the object.

5.5. WSDOC Using APL2

Putting this all together, here is how you might build a

WSDOC tool with APL2:

) CLEAR
CLEAR WS

Q WSDOC; A; CR; M; NL; SINK; V
[11 A+, NL flNL, ,cR flCR,

[21 S1NK16+ ~ 1 ~ ~ l_JNADA

[31 M+NL 3 4 n flames matrix
[Q] V+.[l+DIO]M R Nested vector
[51 WSDISP.. V R Display each

v

7 WSDISP N
[11 ~+t , n Blank line
[21 ~+, V ,,N e Show name

[33 ~+CR N n Definition
v

)SAVE TOOLS
1994 -fo-30 9:55:09

3 11 CINA ‘PACKAGE’
f

PACKAGE ‘ TOOLS ‘
TOOLS TEXT A

]LOAD MYAPP
1994-10-24 11:59:14 (GMT)

‘TOOLS’ 11 flNA r WSDOC’
1

WSDOC
. . . function listings. . .

APL2 does not have a 12WSID, so it is not a simple matter

to report the current workspace nasne.1’

The process of defining the tool in the active workspace

potentially displaces onename(WSDOC). Ofcottrse, if you

anticipate a name conflict, you could’’manually” associate

an alias with WSDOC:

)LOAD MYAPP
1994-10-24 11:59:14 (GMT)

lTOOLSf 11 IINA *MYALIAS WSDOC’
1

MYALIAS
. . . function listings. . .

16

17

Brief tirade: Whymust Icode SINK+(or tlJ7A+)when I just

want to throw away a result? It seems obvious that monadic
assignment should be allowed for this purpose!

IBM does supply a defined function named M5NAME in the
TRANSFER -wo~kspace in public library 2, which does the

same thing. But after takittg a look at it, you may still wish
they would implement D WSID.

APL Quote Quad 201 Swain

5.6. Examining the Root Namespace

An annoying problem with using ‘ ‘ 11 DNA k that it

fails unless it is executed tiom a namespace. This creates

an inconvenient development cycle — as it stands, W5’D O C

must be packaged before it can be run, and re-packaged

between each change and test. It would be more

convenient if we could test without packaging.

You can work around this problem by fixing a cover

fi.mction instead of associating an alias when you detect

that you are running in the root namespace. One way to do

this is to use QNS before attempting an association:

[...1
[...1
c...1
[... I
[...1
[...1
[...1
[...1

~INK+3 11 ~NA ~QN~ t

+(‘ ‘=l~QNS O) PROOT
SINK+ t t 11 flNA ‘ NL DNL t
+OK

ROOT :
SINK+CIFX ‘R+NL A’ ~R+-flNL At

OK:
M-+NL 3 4

Or, you can attempt an association and examine CIN1l’s

result — if it fails, you’re not running in a namespace:

[...1 +(” 11 IJNA ‘NL DNL’)POK
[...1 SINK-+flFX ‘R+NL A’ fR-+UATL At
[,..] OK:
[...1 M+NL 3 ~

With either ofthese techniques you can proceed to use the

same “alias” for the system fhnction whether testing (un-

packaged) orinproduction (packaged). (But it sure would

bealotsimpler ifyoucould ahvays use ‘ ‘ 11 DNA...)

Of course, if you execute such code inunpackaged form,

local variables may shadow objects in the target

namespace, but during development this is typically an

acceptable tradeoff for the faster testing cycle.

5.7. Current Non-Root Namespace

Note that because we use ‘ ‘ 11 DNA to associate with

the system functions, WSD O C examines the root namespace

in the active workspace (which isn’t necessarily the caller’s
namespace).

In AI?L2, the only way to get into immediate execution

mode with a non-root namespace as the current namespace

is for a function executing in the namespace to suspend.

Since we professionals never make programming errors that

cause unintentional suspensions, it is a good debugging

practice to include a hook that will allow a deliberate

Namespaces: APUW vs. APL2 202

suspension when desired. This can be as simple as

reaching into the namespace and setting a stop control:

But what if we want to be able to document a non-root

current namespace? Unfortunately, QNS cannot be used to

query its caller ‘S narnespace, so to make WSDOC work in

such a context, we must use QNS to query the current

namespace before entering the tool namespace:

) CLEAR
CLEAR WS

7 WSDOC2 ;NS; QNS; SINK; WSSUB2

[11 SINK+ 3 11 DNA ‘ QNS ‘

[21 NS+QNS O R Where are we?
[31 SINK+ ’T00LS2’ 11 flNA tJ/5’S17B2~
[4] WSSUB2 NS

v

V WSSUB2 NS; A; CR; M; NL; SINK; V

[11 El+’ Namespace: “’, (+ NS), ””

[21 A~,NL ~NLt fcR flCR,

[31 SINK+NS CINAZA
[41 M+NL 3 4 Q Names matrix
[.53 V+ C[l+BIO]M R Nested vector
[61 WSDISP2 ““ v R Display each

v

V WSDISP2 N

[11 ~+t f n Blank line

[21 ~+,v ,,fl n Show name
[31 fli.CR N R Definition

v

)OUT TOOLS2 WSDOC2
)ERASE WSDOC2
)SAVE TOOLS2

1994-10-30 9:55:09
3 11 EINA ‘PACKAGE’

1
PACKAGE ‘TOOLS2’

TOOLS2 TEXT A
)LOAD MYAPP

1994-10-24 11:59:14 (GMT)
‘TEMP’ 11 DNAztEC 13ECr ‘FoO t

11
SINK~E6’ ~S~FOO~~t
FOO 5

FOO[l]
)IN TOOLS2 WSDOC2
WSDOC2

Namespace: ‘TEMP’
function listings.

APL95

Note that WSDOC2is notexecuted fiomthenamespace —

it is used in its native form in the target workspace. The

sole reason for this is so that the current namespace name

(iVS) can be queried before being passed into the tool

namespace as the argument to the packaged subroutine

WSSVB2, which uses it to do its associations. Note also

that since WSDOC 2 k defined in the target namespace,

WSSUB 2 will “see” it and include it in the fimction

listings.

5.8. Caller’s Namespace

Another way to examine a non-root current namespace is to

make use of a supplied routine named EXP’8 which evalu-

ates expressions in its caller’s namespace and works even

when it is not packaged:

CLEAR

v
[11
[21
[31
[41

v

v

[11
[21
[31

v

) CLEAR
Ws

WSDOC3 ;EXP; M; SIILU; V
SINK+ 3 11 QNA ~EXp 1
M+EXP ‘CINL’(3 4)

V~C[l+l_J~O]M FI

WSDISP3 ‘- v R

WSDISP3 N
~+f , R
Q+t V I,N R
fl+EXP ‘flCR’ N n

n Names matrix
Nested vector
Display each

Blank line
Show name
Definition

)SAVE TOOLS3
1994-10-30 9:55:09

3 11 llNA ‘PACKAGE’
“

L

‘ WSDOC3’ PACKAGE ‘TOOLS3’
TOOLS3 TEXT A

) CLEAR
CLEAR WS

)LOAD MYAPP
1994-10-24 11:59:14 (GMT)

‘ToOLS3’ 11 LINA ‘WSDOC’3’
1

WSDOC3
. . . function listings. . .

Note above that PACKAGE accepts an optional left argu-

ment, which is a list of names in the namespace that you

want to beaccessible flomoutside the namespace. (With-

1S EXP’sargument isalist of items. Thepossibilities are:

Ri-EXPC~NAME ~ R Var or niladic fn
Ri-ExP INAMEI RARG n Monadic fn
R+Exp LARG INAMET RARG R Dyadic fn
Ri-Exp !NAME! l+! VALUE R Assign var

outa left argument, access toanyname inthenamespaceis

permitted.) Inthiscase, theonZy namelgthat can be ONA’d

inthenamespaceis WSDOC3; the subroutine WSDISP3,

while still available to WSDOC3, is “private” and will

never bevisible fiomoutside the Z’00LS3 namespace,

5.9.WSDOCWithout)LOAD

One rather amazing thing you can do with APL2 is to

document asavedworkspacewithout even)LOADingit:

V WSDOC4 WS;CR;NL;PACKAGE;SII?K
[11 SINK+3 ~1 llNA ‘PAC’KAGE’
[21 SINK+PACKAGE WS

[31 SINK+WS 11 flNA lNL flNL~
E41 SINK+WS 11 ~NA ~C’R ~GR1
[53 M+NL 3 ~ R Names matrix

[61 V+CII+DIO]M n Nested vector

[71 WSDISP4””V Q Display each
v

V WSDISP4 N
[11 ~+, , ~ Blank line

[21 C!+*V ‘,N B Show name
[31 Cl+-CR N ~ Definition

Q

WSDOC4 ‘MYAPP’
. ..function listings. . .

There is no need to package WSDOCU. Andnot asingle

name is displaced in the target workspace!

5.10. Link-Editing

For performance reasons, before making extensive use of a

namespace, it should be link-edited into a load library.20

Several namespaces can be combined into one LOADLIB,

each as a MEMBER. Lines 32-40 in Appendix A show

howthisisdone.21

19 This includes system functions, sodurittg testing youmaywattt

to add DE C to the list to allow for unanticipated poking around
in the natnespace.

20 -

21

AkO, anatneSpaCemUSf t)ellnk-edited berorelt can De placea

in a shared segment (CMS) or the Link Pack Area (TSO) so
that the storage containing the narnespace can be shared by
multiple users.

IBM also supplies two REXX execs that do link-editing; see
AP2MP11L (for a LOADLIB) or AP2MP11M (for a
MODULE) in the APL2 reference documentation.

APLQuoteQuad 203 Swain

6. Conclusion

The overall capabilities provided by the IBM and Dyadic

implementations of namespaces are similar, and both are

extremely powerful and very welcome enhancements to

their respective systems.

The most significant differences between the two imple-

mentations arise from the very different ways that they

store narnespaces. Each design has its merits.

Because APL2 stores the initial contents of a namespace in

a file that is external to any workspace, it is better suited for

storing, maintaining, and distributing code that will be used

by a number of applications. A namespace is available

tlom any workspace, storage is not wasted by saving the

contents of a namespace in every workspace, and changes

to the code in a namespace can be distributed with ease.

Since the stored namespace is read-only, and access maybe

restricted to certain objects, APL2 namespaces can be very

usefid in the construction of run-only applications. On the

other hand, the process of creating the namespace is

inconvenient (introducing something like the dread

code/compile/run cycle into APL development), and

requires that the programmer use possibly unfamiliar

operating system facilities such as the linkage editor.

APL/W narnespaces are significantly easier to create and

use. And you do not have to know anything about the

surrounding operating system environment to use them.

(For those who are familiar with the well-known DOS

directory scheme, learning is simplified because they

follow this paradigm so closely.) They can be created on-

the-fly, and it is not necessary to “declare” (associate)

anything prior to using them. The maintenance and testing

of code in a namespace is straightforward; the) CS

command is a great convenience. Because it is available

across workspaces, the CISE system namespace is very

usefid, particularly for developers. In general, they are

more accessible to the average APL programmer. But

because they are stored in a workspace, they are less well-

-suited for the maintenance and distribution of common

code.

One somewhat troubling aspect of Dyadic’s

implementation is that it introduces new syntax into the

APL language. The “dot” naming scheme will be familiar

to users of many other systems and languages (UNIX, SQL,

etc.). But when you see an expression like

A PL US. TIMES B, is there an inner product going on,

or a reference to an object in a namespace? APL has gotten

into trouble like this before: is / a fimction or an

operator...?

Namespaces: APUW vs. APL2 204

IBM’s approach (via ONA) is a much more generalized

design, allowing access to all sorts of objects outside the

workspace (including code written in other languages), and

it does not introduce any new syntax to the language itself.

But it extracts a toll in terms of ease of use.

Dyadic’s approach is more APL-centric, and therefore may

be more appealing to and more easily learned by the APL

purist.

7. Acknowledgments

Writing a paper like this is like teaching ahnost any topic:

you wind up learning a surprising amount more about a

topic that you thought you knew pretty well to begin with!

I am especially grateful to David Liebtag (IBM) and John

Scholes (Dyadic) for their illuminating suggestions and

clarifications. Thanks also to Bob Smith (Qualitas) and

Bob Hendricks (Sail Systems) for their thoughtful readings

of an early draft.

8. Bibliography

8.1. Reference Manuals

Dyalog APL for Windows [version 7.0], Language

Reference, Dyadic Systems Limited, 1994.

APL2 Programming: System Serviees Reference, Version 2

Release 2, IBM publication number SH21 -1054-01, 1994.

8.2. Conference Proceedings

John Scholes [Dyadic Systems], Namespaces in @slog

APL Version 7, New York SIGAPL APL as a Tool of

Thought LY conference proceedings, October 1994.

8.3. Other Publications

See also two old publications by members of the IBM

APL2 Development group:

“ Brent Hawks, Alice in Packageland. [1987.]

● Michael T. Wheatley, Packaged Workspaces. [1988.]

These are available by contacting the IBM APL2 Hotline:

Internet ap12@vnet.ibm.tom, or telephone 408-463-2752.

Both are slightly out of date, but are nevertheless very

interesting supplements to the current documentation.

APL95

9. Appendix A:

I find it very helpful to maintain APL2 tools in a “source code” workspace that is then “compiled” into a namespace. In this

source workspace I keep the functions I want to package, other development and testing tools, and an INSTALL function

which creates not only the narnespace but a workspace and transfer file containing the specified “visible” tools. The

constants on lines 7-10 should be changed to speci& the name of the desired namespace and what you want packaged into it.

After running 11’?5’TALL, you may fetch a tool with any of three methods:) IN,) COPY, or CINA; for example:

)IN FN1’OOLS XREF,) COPY FNTOOLS XREF, or ‘ TOOLS. FNTOOLS’ 11 DNA ‘ XREF’,

V INS TALL; A; K; LL; Q; V;WS
[11 R Crest e APL 2 namespace from source (active) workspace
[21 Q Creates production loadlib, workspace, and transfer file
[31 R Active workspace is lost in this process, so)SA VE first !
[41 n Stack entire process so no shadowing of our locals
[51 Q 10/26/94 Rex Swain, Independent Consultant, 203-868-0131
[61
[71 LL+’TOOLS’ ~ Target LOADLIB
[81 WS+’FNTOOLS ‘ ~ Target WS, APLTF, and member
[91 V+,FNREpL RELABEL XREF, ~ Visible objects
1101 A+V,’ HELP CR2VR XREF’ R All objects
[11]
[121 K+’(FIFO)’

[13] Q+lol ~SVO lK1

~ Prepare for FIFO stacking
n Share K with stack processor

~i~l K+’)CHECK SYSTEM DEBUG(2)1 R Display stacked input
[151

[16] K+’)OUT ‘,WS,’ ‘,A R Create temp TF (all ObJ-t?CtS)

[171
[181 n Create temporary workspace from temporary transfer file
[191
[201 K+’)CLEAR’
[211 K+’)IN ‘,WS
[22] K+’)WSID ‘,WS
[231 K+’)SAVE’ n Create temp WS from temp TF
[21+1
[251 R Create package (file FOO TEXT A) from temporary workspace
L261
[271 K+’)CLEAR’
[281 K-+’3 11 llNA “PACKAGE’”
[291 Q+l+e(c’ ‘tt),””((v#’ I)cV),””I III

[301 K+Q,’ PACKAGE ?~t,vs,lttt
[311
[321 n Linkedit package into LOADLIB
[331
[341
[351
[36]
[371
[38]
[391
[40]
[411
[42]

[431

K+I)HosT

K+,)HOST

R4t)HosT

K+,)HOST

K+,)HOST

K+,)HOST

~+t)HosT

R Create

FILEDEF SYSLMOD DISK ‘,LL,’ LOADLIB A (RECFM U’
LKED ‘,WS,t (NAME l,WS,V NOTERM~
FILEDEF SYSLMOD CLEAR’
ERASE ‘,WS,Y LKEDIT A’
ERASE ‘,WS,’ TEXT A’
LOADLIB COMPRESS ‘,LL,’ LOADLIB A (DISK’
ERASE LOADLIB LISTING A’

production TF and WS with CINA’d visible objects

[44] K+I)CLEARI
[451 K+’ ’’’,L,WS,’”WS,’” 11 CINA=J’,Q
~46] K+’)WSID ‘,WS
[471 K+,)SAVEJ

[481 K+’)OUT ‘,WS,~ ‘,V
[491

[501V K+’)CHECK SYSTEM DEBUG(-2)’ R Shut off stack display

APL Quote Quad 205 Swain

