
The Workspace Manager:
A Change Control System for APL

Rexford H. Swain
Independent Consultant

8 South Street
Washington, CT 06793

USA
203-868-0131

ABSTRACT

This paper describes the Workspace Manager (WSM),

a tool that helps to support and add discipline to APL

system development and maintenance efforts.

The WSM acts as a repository of APL objects (variables,

fimctions, and operators). Programmers use WSM tools

to find where objects are used, edit objects, save changed

objects, and request that objects be installed into (or

erased from) production workspaces.

Periodically, the WSM installs new releases of production

workspaces by merging new and changed objects into

existing workspaces.

Audit trails are maintained for all of these activities,

malchg it possible to review the change history of an

object, compare different versions of an object, compare

different releases of a workspace, revert to an old release

of a workspace, and so on.

INTRODUCTION

Motive

Mobil maintains a suite of APL-based applications and a

large database of health and safety information that is used

to protect its employees, customers, and the public, and

ensure compliance with state, Federal, and international

regulations.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and not!ce IS given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

i’ 1993 ACM o-89791-61 2-3/93 /0008 /0286 . ..$1 .50

Change Control System for APL

Daniel F. Jonusz
Manager, Product Safety Systems

Mobil Oil Corporation
P.O. Box 1031

Princeton, NJ 08543
USA

609-737-5598

Health and safety data is manipulated by sophisticated

logic to produce material safety data sheets and regulatory

compliance reports. It is absolutely crucial that the results

produced by the system be accurate. But the very nature

of the regulatory environment is one of constant flux, so

there is an almost continuous need for new and different

logic and analysis techniques.

As the amount of mandated compliance legislation has

surged over the years, we have had to increase our

programming efforts to meet the increasingly complex

regulatory requirements. What began as a one-developer

application now has up to ten different developers writing

code which is used by hundreds of end-users.

While it used to be simple to keep track of who was doing

what, at this juncture it is vital that we have some

automated means to manage and audit development

activities.

Common code is proliferated throughout various

applications in the system, When modifications are made,

the developers must ensure that their changes will produce

the desired result in the specific application under

development, and, just as importantly, not have adverse

effects in any other places they are used. All developers

must also be wary of the possibility that one’s work may

counteract or conflict with another’s.

Opportunity

In the past, in order to make a change to a production
workspace, a programmer would go through the following

procedure:

1. Invoke the application, and break out into the

production workspace.

2. Edit and test; edit and test; edit and test . . .

3. Save new andlor changed code into a temporary file:

286 APL93

4. Send the temporary file to the “master” userid which

owns the production workspace.

5. Log on to the master userid, invoke the application,

and break out into the production workspace.

6, Copy in the temporary file.

7. Save the workspace.

8. Log off from the master userid.

We wished to streamline this process in general, and we

developed some more specific goats. We wanted to be

able to:

●

●

✎

✎

✎

✎

●

✎

✎

✎

●

Eliminate the bottleneck (and inconvenience) of

logging onto the master userid.

Cut down the number of mid-day changes to

production applications.

Resurrect an erased object.

Keep a journal of all changes.

Highlight the differences between similar objects.

Highlight the differences between similar workspaces.

Restore an earlier version of an object that has lbeen

changed.

In an emergency, “roll back” an entire application to

its state prior to some unfortunate change.

Provide a mechanism that makes programmers aware

of like-named objects that are used in more than one

workspace, and whether or not their definitions are

identicat.

After a shared object has been changed, al!low

programmers to easily instatl synchronized versions

into the appropriate workspaces.

Perhaps most importantly, reduce the possibility that

two programmers would unknowingly make

simultaneous but conflicting changes to a given

program.

We wanted to do all this with a support system that was

not too intrusive, not too difficult to learn, and not
completely foreign to the experience of a relatively new

programmer.

And we had to do all this within a corporate environment

and budgeting situation that strongly prefers deliverable,

visible application enhancements to the hard-to-quantify

benefits of programmer productivity and application

reliability,

Weapon

The Workspace Manager described here is implemented

on a large IBM mainframe computer running the

VM/CMS operating system, the APL2 language program,

and the SQL/DS database management system.

IMPLEMENTATION

Note that the main focus of this paper is on the

functionality of the WSM, rather than exactly how it is

implemented.

Since there are so many differences among the wide

variety of language and database systems used by APL

developers, specific technicat details would not be very

useful to many readers anyway.

Instead, we have chosen to concentrate on the desirability

of such a tool, and some of our significant design

decisions.

Design Decisions

We designed the WSM to be a repository for everything

necessary to build a production workspace, and keep a log

of all editing and installation activity.

We chose to retain all old versions of changed objects so

that we would be able to re-build a workspace as of some

prior date in case of a disastrous problem. Saving old

versions would also mean that no program could be

irretrievably lost after being erased by someone unaware

of its importance.

We decided not to force programmers to use any

particular editing and/or testing environment, since every
individual has their own preferences and favorite tools.

Nor would the WSM try to enforce documentation or

coding standards.

We felt that programmers should request installations into

production workspaces, but that the WSM should actually

perform the installations on a periodic basis.

We decided that the WSM would build traditional APL
workspaces, rather than dynamically incorporating

functions from external files. This is feasible in a virtual

memory environment, and makes the thousands of loads

APL Quote Quad 287 Swain & Jonusz

and executions by end users more efficient. It also vastly

simplifies life for programmers who want to use

traditional active workspace oriented tools to search

workspaces and generate function call trees and cross-

-references.

Overall, the idea was to have the WSM do its job without

getting in the way of our talented programmers and their

personal working habits.

Terminology

An obiect is a variable, function, or operator.

A new version number is assigned to each distinct

definition of an object with a given name. The syntax

OBIJECT. VERNO (for instance, FOO. 5) is used to refer

to a specific version of an object,

A workspace is a collection of objects.

A new release number is assigned to a workspace as it is

put into production. The syntax WSID. RELNO (for

instance, NEWS. 18) is used to refer to a specific release

of a workspace.

You check out (edit) an object that you wish to change.

You check in (save) an object after you have changed it.

Overview

There are four fundamental steps in the cycle of

maintaining APL objects and workspaces with the WSM.

Each step is invoked with a full-screen WSM tool:

1. FINDOBL Find an object (select desired version)

2, ED1TOi3~ Check out object for editing

3. SAVEOBJ Check in modified (or new) object

4. INSTOBr Request installation into workspaces

Rather than subject you to a formal description of these

four main tools, we will show examples of how a
programmer might use them in the all-too-common

process of fixing a bug.

Change Control System for APL 288 APL93

Workspaces Manager: Find Object

Object: PROCESS

. Version: 3 (3) Display Options

ClaSS: Function (Function) ___

Size: 1317 PF4 : 3 versions of this object

Saved: 1992-04-15 00:11:13 @ PF’5: 5 workspaces NOW use ANY version

By: DFJONUSZ PF6 : 6 workspaces EVER used ANY version

Action: Navigate: .—

5 workspaces NOW use ANY version:

WSID Relno Installed Ve rno Saved
___————— -----

. MACSIN 250 1992-08-06 05:31:37 3 1992-04-15 00:11:13

= NEWTOX 176 1992-08-06 05:37:16 3 1992-04-15 00:11:13

. TOXIN 258 1992-08-06 05:38:08 3 1992-04-15 00:11:13

< MASTER 129 1992-08-06 0533:27 1 1988-12-12 16:41:16

< MIPS 153 1992-08-06 05,34:35 1 1988-12-12 16:41:16

PF: l.Help 2.This/Any 3.Quit 4.Vc?rsions 5.Now 6.Ever 9.DoIt! 10=Peek 11.Print

For version history in a workspace, point cursor and press Enter

—.. -. —
blgure 1: SampleF’lNDOBJ Panel

Stepl:FINDOBJ

The tool FINDOBJ is used to identify an object and its

usage.

Suppose, for example, you become aware ofaproblernin

afunction named PROCESS. First youimportthe’iVSM

tools into your active workspace; then you execute the

FINDOBJ tool, naming the object you have in mind:

) IN WSM

FINDOBLJ ‘PROCESS’

The panel above (Figure I) appears.

(For publication purposes, input fields in the panel are

distinguished by underlining; on a 3270-family display

terminal, standard field colors and intensity are used to

differentiate the various field types.)

In the upper-left quadrant of the panel, you see that the

most recent version of PROCESS is version number 3, a

function, saved on 1992-04-15 at 00:11:13 by userid

DFJONUSZ, (The version of PROCESS thatis inyour

acfheworhpace is shown in parentheses to the right of

the version and class.)

The upper-right quadrant of the panel shows some

statistics about PROCESS and the PF keys to press for

three different displays in the lower half of the panel. The

“at” symbol next to PF5 indicates that you are currently

looking at the list of workspaces that now use any version

of the object.

The lower half of the panel contains the display requested

by PF4 or PF5 or PF6. In this example, you see that

there are five workspaces currently using two distinct

versions of PROCESS.

Ifthe problem with PROCESS was reported toyouby a

user of the workspace MACSIN, then you learn that the

current production release of MACSIN is release number

250 which was installedon 1992-08-06 at 05:31:37, and

thatMACSINuses version number 3ofPROCESS.

You also become aware that whatever you do to fix the

problem, it better work in workspaces NEWTOX and

Z“OXINaswell. And you might even look into version 1

and see about bringing those up to date too.

Usually you would just press PF3 to quit after lookingat

this information. Or, if the selected object was not

already inyour active workspace, you could type ’’Get”in

the “Action” field and then press PF9.

APL Quote Quad 289 Swain &Jonusz

Workspace Manager: Edit Object

Obqect: PROCESS

. Version: 3 (3) Display Options

Class: Function (Function)

Size: 1317 @ PF4: 2 edits on ANY version

Saved: 1992-04-15 00:11:13 PF5 : 0 edits pending on ANY version

By: DFJONUSZ PF6 : 0 installs pending on ANY version

Action: Navigate:

why :

2 edits on ANY version

Verno Status Checked out By Checked in VernO

----- -------- ---- .------------—— ___..._—

< 2 Saved 1992-04-14 23:41:27 DFJONUSZ 1992-04-15 00:11:13 3

Improve commenting re PPFK

< 1 Saved 1991-09-25 10:40:03 RHSWAIN 1991-09-25 16:32:20 2

Remove TTY terminal handling

I.Help 2.This/Any 3=Quit 4.Edits S.Pending 6.Installs 9.DoIt! 10.Peek 11.Print

To select a different version, point cursor and press Enter

.-.. . . . ————-— —. .

Step 2: EDITOBJ

Having decided which version of an object you want to

work on, EDITOBJ lets you check out the object. This

is a mechanism that allows other programmers to see that

you are in the process of changing the object, and thus

helps to avoid conflicts when two people, unbeknownstto

each other, go to work on the same object,

Like the FINDOBiT panel, the upper-left quadrant of the

panel identifies the object/version that you have selected,

and the upper-right quadrant shows the three possible

displays.

In this example, you would execute:

EDITOBIJ ‘PROCESS’

Thepanel above (Figure 2) appears.

You see that there have been two previous changes to
PROCESS. Version 1 was changed on 1992-09-25 by

userid RHSWAIN, who described the work as “Remove

TTY terminal handling”, and became version 2 when it

was saved. Version 2 was then changed during the night

of 1992-04-14 and became version 3.

Change Control System forAPL 290

If someone else had PROCESS checked out already,

EDITOBLJ would default to the PF5 display, so you

would immediately see who and why. At that point, it

would be up to you to negotiate with the other

programmer.

In order to actually “check out” this object, you would

type “ E“ (for Edit) in the “Action:” field, tab to the

“Why” field and type an explanation of what you are

planning to do, and then press PF9.

The panel display would then change to show that there

are now three edits, with one edit pending. Your new

pending edit would appear at the top of the display,

showing version 3, a status of “Editing”, and a blank

“Checkedi n’’timestamp. (See also Figure 3.)

Note that EDITOBLT does not attempt to help you actually

edit the object you select -- you have simply posted a

notice that you are in the process of changing this object,

Any other programmers who attempt to check out
PROCESS now will default to the PF5 display and see

that you have work in progress.

Youare now free touse your own favorite techniques to

edit and test.

APL93

Workspace Manager: Save Object

Object: PROCESS
. Edited: 3 Display Options

Save: (tba) .-.--_____— ________________________________

Class: Function PF4 : 3 edits on ANY version

Size: 1439 @ PF5: 1 edit pending on ANY version

Saved: 1992-11-24 13:03:50 PF6 , 0 installs pending on ANY version

By: RHSWAIN

Action: Navigate:

Why: Fix MSDS display formatting problem noticed by APL93 audience

1 edit pending on ANY version

Verno Status Checked out By Checked in Ve rno

----- -————___ _____________ _______

3 Editing 1992-11-24 11:27:43 RHSWAIN

Fix MSDS display formatting problem noticed by APL93 audience

I.Help 2.That/Any 3.Quit 4.Edits 5.Pending 6.Installs 9.DoIt! 10.Peek 11.Print

—.- -. —————————.
blgure 3: Sample SAVEOBJ Panel

Step3:SAVEOBJ

Having completed and tested your changes, SAVEO13J

lets you check in your object, saving it into the WSM

database and closing out the edit. When your modified

object is saved, a new version number is assigned to it.

Continuing ourexample , youexecute:

SAVEOBJ ‘PROCESS’

The panel above (Figure 3) appears,

SAVEOBJlooksh the edit log to see ifyouhave anedit

in progress on PROCESS. Since you do, it knows what

version you started working on, and is able to retrieve the

exphmationyoug ave. (You could change theexphmation

at this point if it turned out that the problem was

something other than what you originally thought.)

To actually save your new version, you type “S” (for

Save) in the “Action” field and press PF9.

The WSM then increments the version number, and the

panel changes so that version “4” replaces “(tba)” in the

“Save” field, and the current time and version number 4

appear in the “Checked in” and “Version” columns,

At this point, you would probably want to proceed to

INSTOBJ to request that your new version be installed

into one or more production workspaces. Rather than

pressing PF3 to quit SAVEOBJ and then executing

INSTOBJ, you could use the WSM navigation feature.

You would type “I” (for Install) in the “Navigate” field

and press PF9.

Find/Edit/Save/install Sequence

While you usually proceed in sequence through the four

find/edit/save/instal steps, this is not always the case:

.

.

.

You might stop after the save step if you wanted

another programmer to test your new function before

installation. Or you might want to postpone

requesting an install until you had finished saving

several interdependent functions -- you would want

them all to be installed together.

If you want to save an entirely new object into the

WSM, you would skip the edit step (there is nothing to

check out) and go directly to the save step (you will be

saving version 1),

If you want to install an existing object into a

workspace, you would go directly from find to install,

APLQuoteQuad 291 Swain &Jonusz

Workspace Manager: Install Object

Object: PROCESS
—— Edited: 3 Display Options

Install: 4 -————...————_._.—————___——___________ ______

Class: Function !?F4 : 8 installs on ANY version

Size: 1439 PF5 : 0 Installs PENDING on ANY version

Saved: 1992-11-24 13:03:50 @ PF6: 5 workspaces NOW use ANY version

By, RHSWAIN

Action: Navigate:

WSIDS: MACSIN NEWTOX TOXIN

Why: Fix MSDS display formatting problem noticed by APL93 audience

5 workspaces NOW use ANY version

WSID Relno Installed Ve rno Saved

. MACSIN 250 1992-08-06 05:31:37 3 1992-04-15 00:11:13

= NEWTOX 176 1992-08-06 05:37:16 3 1992-04-15 00:11:13

. TOXIN 258 1992-08-06 05:38:08 3 1992-04-15 00:11:13

< MASTER 129 1992-08-06 05:33:27 1 1988-12-12 16:41:16

< MIPS 153 1992-08-06 05:34:35 1 1988-12-12 16:41:16

I.Help 2=This/Any 3=Quit 4=Installs 5=Pending 6.WSS 9.DoIt! 10.Peek ll=Print

.
Figure4: Sample INSTOBJk%nel

Step4:lNSTOBJ

Having saved your new version of PROCESS, you use

lNSZ’OBJto requestthattheWSM install it intooneor

more production workspaces. You execute:

INSTOBJ ‘PROCESS’

Thepanel above (Figure4) appears.

TheWSM examines the edit log and determines that the

“parent” of PROCESS.4 was PROCESS.3. Since

PROCESS. 3 is currently used in three workspaces, the

WSM guesses that you wantto install your new version

into those same three workspaces -- so they are

automatically defaulted into the “WSIDS” field.

(You still get a list of all workspaces that use any version

of PROCESS -- this is an opportunity to consider

bringing the other workspaces up to date.)

After making any desired changes in the “WSIDS” and

“Why’’fields,you type ’’Copy’’ inthe “Action’’field,and

then press PF9. (Another possible action is “Erase”.)

Your installation request then becomes “pending” and is

actually performed the next time that the WSM installer

job runs.

When you invoke any of the four find/edit/save/install

tools, there a variety of ways to identify the version of an

object that you want. If you supply just an object name as

an argument, you select the most recent version of the

object. But this is only one of six possibilities:

OBJECT latest version

OBLJECT.-I previous version

OBJECT.4 version 4

WSID.OBJECT version in latest ws release

WSID. -2.OBJECT version in ws 2 releases ago

WSID.48.OBJECT version in release 48 of ws

The most frequently used formis WSID.013JEC2’, For

example, if you want to check out the version of object

PROCESSthatis being used in workspace MASTER, you

could rely on the WSM to figure out the version number

by executing:

EDITOBJ ‘ikL4STER. PROCESS’

Change Control System forAPL 292 APL93

Workspace Manager: Compare Workspaces

WSID 1: TOXIN Release: 11’7 WSID 2: NEWTOX Release: 12
Installed: 1992-03-02 17:34:09 Installed: 1992-03-02 17:31:56
------------------------------- .______ ______________________________________

O objects ONLY in this ws 2 objects ONLY in this ws
------------------.----—. --------------------- ----

MSDB.8 Fn

NAV. 1 Fn

3 objects DIFFERENT in this ws 3 objects DIFFERENT in this ws
------------------------------ ------------------------------

PLIST .8 Fn PLIST. 9 Fn

SPANEL .4 Fn SPANEL .6 Fn

TOXSUBACODE. 1 Var TOXSUBACODE.2 Var

1740 objects SAME in this ws
-—----——---——...--—— --------

ACCEPT.6 Fn

ALL.3 Var

AND.1 Op

AVG. 1 Fn

I=Help 3.Return 4.Only 5.Diff

Peek: point cursor and PF1O.

1740 objects SAME in this ws

ACCEPT.6 Fn

ALL.3 Var

AND.1 Op

AVG. 1 Fn

6.Same 10.Peek 11.Print 12=Search:

Search: PF12, or Enter from search field.

Figure 5: Sample COMPASS Panel

MULTI-OBJECTTOOLS

For programmers with more than a few objects to change

(or who wish to avoid panels), the WSM has four non-

interactive multiple-object tools with pluralized names:

FINDOBJS ‘objs’

‘why’ EDITOBJS ‘objs’

SAVEOBLTS ‘objs’

‘ Wss’ INSTOBLJS ‘objs’

THEWSMINSTALLER

Periodically, a job known as the WSM installer is

invoked, It creates new releases of production workspaces

by performing all pending installation requests in existing

workspaces,

The installer is automatically initiated (by the VM

Schedule product) ona daily basis. It is scheduled tclrun

during off-prime hours in orderto avoid changes in the

midst of a business day (and also to avoid prime-time

chargeback rates !),

For each workspace with any pending installation

requests, it links to the appropriate disks, invokes APL2

(using the “controlled invocation” feature), loads the
workspace (bypassing the latent expression), performs all

pending copy andior erase actions, saves the workspace,

and updates the WSM directories accordingly.

Inevitably, it is occasionally necessary to run an

unscheduled install becauseof an urgent need to fix some

problem. In this case, the installer may be executed

“manually”, and the administrator may interactively select

which workspaces and/or objects to install.

OTHERTOOLS

Compare Workspaces

TheWSM tool COMPASS may be used to compare two

different workspaces (or two releases of the same

workspace). A sample display is shown above (Figure 5).

Compare Objects

Another WSM tool, COMPOBJS, compares two objects.

This is particularly useful when investigating the

difference between two versions of a given function, The

display shows lines which are different (or not found) in

eitherofthe two versions.

Various Queries

Many other tools are available to query the histories of

edits, installs, and releases; simulate pending installations;

show object-by-workspace usage maps; and so on.

APL(2uote Quad 293 Swah&Jonusz

EVALUATION

The Workspace Manager has been inactive use for more

than a year, enabling us to draw some conclusions about

our environment, the WSM itself, and our own practices.

System Environment

The combination of REXX, APL2, and SQL make an

extremely powerful software development environment,

(Of course, similar implementations would be feasible

using other operating systems, APL dialects, and/or

database managers.) Two facilities were especially

helpful:

● The APL2 “namespaces” facility (associated processor

11) offered a ve~ clean way to “package” and isolate

the WSM code from the programmer’s application

code, ensuring that there were no name conflicts and

localization/shadowing problems, The WSM code

essentially disappears from the programmer’s active

workspace when not in use. All users share the most

up-to-date version of the WSM code, even if saved in

private workspace.

● The SQL “logical unit of work” facility alleviated two

common difficulties with data in shared files: the

problem of properly sequencing events when two users

simultaneously request a read-and-update, and the all-

or-nothing issue when more than one table must be

changed at once.

Workspace Manager

After putting the WSM into production, we immediately

saw many of the benefits we had anticipated. In

particular, being able to see the change history of whole

workspaces as well as individual objects has been

invaluable.

The biggest problem with the Workspace Manager is that

it only manages workspaces! When we install application

enhancements that involve modifications to APL objects

together with changes to the structure of SQL tables, we

still must be careful to synchronize the WSM workspace

installations with SQL tables changes. We have a “test”
copy of our database that is very helpful for development

and testing, but we typically wait for a weekend to put

this type of change into production.

Change Control System for APL 294

There have been some complaints from programmers

about the difficulty of orchestrating WSM saves and

installs that involve many workspaces and different

versions of many objects. But we believe that these

problems are inherent to an application environment that

involves so many workspaces containing similarly named

but different objects. In fact, if the WSM had been in use

earlier, many of these difficulties might never have arisen.

Discipline

Programmers who work on applications that are

distributed to many remote systems (e.g., by disk or tape)

learn to go through a very carefid testing phase before

releasing new software, simply because the difficulty of

distributing a fix is relatively high. Conversely, in our

experience, programmers in a centralized time sharing

environment tend to be less careful about testing, because

the “cost” of fixing a bug is relatively low -- they know

that a change can be made (for all users) in a matter of

minutes.

Our hope was that by discouraging ad-hoc application

changes and scheduling relatively few installations, we

would promote a more careful coding and testing

discipline. While it is difficult to measure this sort of

thing, we believe that we are seeing some improvement.

CONCLUSION

Clearly, the WSM is not perfect, but it certainly is a step

in the right direction. While there is much that could be

done to enhance the WSM, our feeling is that we are now

getting about 80% of the possible benefit after expending

only about 20% of the development effort.

REFERENCES

John M. Mizel, Using SCSS to i’vfanage APL2

Development Projects; APL92 Conference Proceedings.

Bob Bykerk, APL Object iklanager; APL88 Conference

Proceedings.

David B. Allen, et. al., LOGOS, An APL Programming

Environment; APL86 Conference Proceedings.

APL93

