
Automated SQL Documentation Using APL2

Rexford H, Swain
Independent Consultant

8 South Street
Washington, Connecticut 06793

USA

Telephone: 203868 0131; 2122425816

ABSTRACT

An application programmer working with APL2 and

SQL/DS will often want to investigate and/or document

the deftitions of SQL tables and views, particularly

when working with tables created by others. Unlike

conventional APL file systems, SQL “knows” quite a bit

about the objects it is storing, but this information is

scattered throughout several system catalogs. An APL2

tool which combines and neatly formats available

information about a table is presented.

Interpretation of this information may point out

conditions which are causing SQL to perform less than

optimally. Some issues which influence SQL

performance are considered, and some gener~

guidelines for improving performance are suggested.

Some familiarity with APL2 and SQL is assumed.

“SQL should be understood to mean IBMs SQL/DS for
VM systems. But other SQL-based database managers,
such as DB2, are very similar.

INTRODUCTION

APL2 and SQL

Presumably, I do not need to preach the many virtues of

APL to this audience. But the APL workspace has long

been recognized as generally inadequate for mass storage

of data that must be shared among users, and entirely

inappropriate as a repository for data that must be

shared by non-APL applications.

Permission to copy without fee all or pari of this material is granted
provided that the copies ara not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery, To
copy otherwise, or to republish, requires a fee and/or specific
permission.
e 1991 ACM 0.89791 .441 .4/91 /0008/0319,..$1 .51)

Most older APL systems have included an interface to

some external fde system, but these were generally

insufficient in various ways: not very powerful,

inaccessible by non-APL programs, and/or totally

unstructured.

SQL, arguably the database manager for the 1990’s,

solves these problems. SQL is extremely powerful and

versatile, is accessible by any other program, and imposes

a structure that is both second nature to APLers and fast

becoming an industry standard.

The main criticism leveled at SQL is poor performance,

but APLers are generally comfortable with (or at least

accustomed to!) trading off some execution speed for

vastly more power and productivity.

APL and SQL work incredibly well together. SQL’s row

and column orientation is a perfect match for APL’s

arrays. APL2 gives us the ability to have matrices exactly

represent arrays of SQL data with varying datatypes and

lengths.

Data Documentation

Most APL installations have workspace documentation

tools that display function listings, function calling

hierarchies, and global variable references. But similarly

meaningful automated documentation of external data

files has historically been much more difficult.

Conventional “flat” or APL “component” file systems

impose little or no structure on data -- typically, the file

design is embodied in the accompanying programs, so

little can be learned from an independent analysis of the

database.

An application programmer working with SQL will often

want to document the definitions of tables and views.

Luckily, SQL “knows” quite a bit about the objects it is

storing. But this information is scattered throughout

several system catalogs.

APL Quote Quad 319 Rexford H. Swain

The tool presented here, DOCTABLE, looks in the SQL

system catalogs for information about a table, its

columns, its indexes, and the dbspace that it is in. The

results are combined into a compact formatted report.

The report is useful for ad hoc reminders, and might also

be included in a more formal application documentation

package.

SQL Performance

Many programmers, concentrating mainly on application

functionality, do not have the luxury of time to learn

much about SQL performance. And at many sites, there

are no formal database administrators or performance

analysts who might be able to help.

The DOCTABLE report may shed some light on

potential SQL performance problem areas. Wlile

reviewing the contents of the report, we will also discuss

how each element may reveal conditions which affect

SQL performance.

Some familiarity with these performance issues may help

to avoid having application performance problems

blamed on APL2 when the actual culprit maybe SQL!

THE DOCTABLE TOOL

Utility Functions

It is assumed that the user has established the necessary

environment by initializing SQL (with SQLINIT EXEC)

and invoking APL2 (including auxiliary processor 127).

Four utility functions are needed to communicate with

SQL via AP127 and read from the system catalogs.

Communicating With SQL Via AP127

First, a variable must be shared with AP127. The

function SQLSHARE (see Figure 1) shares the variable

DAT with A.P127. Typically, this function would be

invoked by 13LX in a workspace using AP127.

Communicating with SQL via AP127 is then quite

straightforward -- a small utility function will pass

requests to AP127 and retrieve its responses. The

function AP127 (see Figure 2) passes its argument to
AP127. The fust item of the result is always a return
code (a five element integer vector).

V SQLSHARE ; Q ; R
[11 R Shares the variable DAT with AP127.
[21 n Based on OFFER from IBM ts SQL workspace.
[31
[41 R-127 13SV0 I DAT 1 R Make offer
[51 Q-l O 1 1 IISVC ‘DAT’ n Set access control
[61 +(R=2)p0 R Exit i.f offered
[71 OESIR=O) / ‘Variable DAT could not be offereds
[81 13SVE+5 n Set event time limit
[91 Ll: R Offer not accepted yet
[101 +(2=13SV0 ‘DAT’)p O R Exit if matched
[111 +(O#CISVE)pLl R Try until time elapsed
[12 1 OES 1Variable DAT offered but not accepted 1

v

Figure 1

V R+AP127 A

[11 R Utility to communicate with AP127 via shared variable DAT

[21 R Assumes SQLSHARE has done the CISVO

[31

[41 DAT~A

[51 R+DAT

v

Automated SQL Documentation

Figure 2

320 APL 91

Trapping Unanticipated Return Codes

Under most circumstances, the return code from AP127

will be five zeros, indicating that all is well. But a second

small utility function is in order so that unanticipated

return codes can be conveniently trapped, The function

SQLTRAP (see F@u-e 3) traps any non-zero return

code and signals it into the calling environment,

Of course, in a production application environment, a

more sophisticated method of error handling would be

appropriate; this version is presented for illustrative

purposes and is quite abrupt.

Selecting From a Table

Selecting data from the system catalogs with the SQL
“SELE~ command requires somewhat more work.

The function SELECT (Figure 4) preps the command,

opens a cursor, and fetches blocks of rows repeatedly

until there are no more, and then automatically commits

the logical unit of work (LUW).

Note that SELECT treats two return codes as special

cases: O 102100, which means no rows were fount and

00100, which means that more rows may remain to be

fetched. All other non-zero return codes are passed to

SQLTRAP.

The number of rows fetched at once by AP127 depends

on the current S ETOPT setting. Thk defaults to 20 but

should generally be set higher to improve efficiency.

SELECT uses the AP127 “MATRIX option. Its result

is a matrix of depth 2 containkg the rows and columns

selected. For example, Figure 5 shows a 2 by 3 result.

System Catalogs

SQL maintains many internal tables called “system

catalogs” which map the contents of the database. Those

that contain information of interest to us are:

SYSTEM.SYSCATALOG Tables and views

SYSTEM.SYSCOLUMNS Column definitions
SYSTEM.SYSINDEXES Index definitions

SYSTEM.SYSDBSPACES Dbspaces

Any SQL user may use ISQL to browse these tables.

(Or, of course, DOCTABLE itself may be used to

examine them.) Unfortunately, IBM did not use the

SQL “COMMENT” command to add remarks describing

the columns of the system catalogs; they are documented

in the IBM SQL manuals.

Information about a particular table or view can be

found in the fust three tables by specifying the creator

and table name, A column in the SYSCATALOG table

(DBSPACENO) points to the pertinent row in the

SYSDBSPACES table.

Updating Statistics

Is it important to note that many of the statistics in the

system catalogs may not be entirely accurate. To

minimize overhead, SQL does not maintain all of the

statistics in real time. For instance, to be certain of the

number of rows in a table, you must use “SELECT

COUNT(*)” rather than rely on the ROWCOUNT

column in the SYSCATALOG table.

The “UPDATE STATISTICS” command should be run

periodically to keep these statistics up to date. The SQL

optimizer uses these statistics in deciding what strategy to

use when accessing table data. The optimizer will be

able to make more informed decisions if reasonably

current statistics are available. It is particularly

important to update statistics after a bulk load of data

into a table.

The “UPDATE STATISTICS” command only updates

statistics about columns that are involved in indexes. The

more thorough “UPDATE ALL STATISTICS”
command compiles information about all table columns.

This should also be run periodically, though less

frequently.

Unfortunately, these commands are serious resource

hogs and will noticeably affect database performance if

run concurrently with application programs. One way to

handle this is to schedule a job which runs “UPDATE

STATISTICS every Saturday night, substituting

“UPDATE ALL STATISTICS once a month. Of

course, if your table data is not updated very often, a less

frequent schedule would suffice.

APL Quote Quad 321 Rexford H. Swain

v SQLTRAP A

[11 n Signals an error if a non–zero return code from AP127
[21
[31 ~(l<=A)/vA+~Av n If nested, use first
[41 +(A=O O 0 0 O)pO R Ok if five zeros
[51 DES ‘NON-ZERO RC FROM AP127: ‘,5A la Else signal error

v

Figure 3

V R+SELECT C;M;N;RC

[11 9 Simplified utility to perform a SQL SELECT

[21 R Usage: R+SELECT ‘SELECT . . . FROM . . . WHERE . . . etc... 1

[31 R Automatically performs COMMIT WORK afterward

[41 R Always returns data in AP127 MATRIX format

[51 R Accumulates entire SELECT result; beware of WS FULL

[61 9 Requires functions: AP127 SQLTRAP

[71

[81 NefSQLSELl R Name of statement
[91 SQLTRAP AP127 ‘PREP’ N(TC) FI Prep the command

[101 SQLTRAP AP127 IOPEN’ N ~ Open cursor

[111 (RC R)~AP127 ‘FETCH! N ‘MATRIX! R Fetch, initialize result

[121 +(RCSO 1 0 2 100)pL2 a No rows found?

[131 +(RC=O O 0 0 0)pL2 9 Complete result?

[141 +(RC=O O 1 0 O)pLl n More rows coming?
[151 SQLTRAP RC n Unanticipated return code
[161 Ll: n Try fetching more rows
[171 (RC M)+AP127 ‘FETCHt N ‘MATRIX’ 9 Repeat original fetch
[181 +(RC!=O 1 0 2 100)pL2 n There weren’t any more?
[191 R+R,[OIOIM 9 Add to result
[201 +(RC=O O 0 0 0)pL2 n Was that the end of it?
[211 +(RC.=0 O 1 0 O)pLl n Still more to come?
[221 SQLTRAP RC n Unanticipated return code
[231 L2: n Finished fetching
[241 SQLTRAP AP127 ‘CLOSEI N n Close cursor
[251 SQLTRAP AP127 ~COMMITr n Auto commit

v

Figure 4

T+lSYSTEM.SYSopTIONS I

W+lSQLOPTION > $lRf!t
M+SELECT ‘SELECT * FROMt T ‘wHEREt W
DISPLAY M

.+-- .

$.+------- .+----- .+-----–––––-----–––––––-–----– . I
I IRELEASEI 12.2.01 IVERSION, RELEASE, MODIFICATIONI I
I ‘-------’ ‘-----t ‘ ------------------------------ * I
I .+–––. .+--- .+-–––––––––––––––----–––––––––-–––––––– . I

I ITIMEI 11S01 IDEFAULT TIME: 1S0, JIS, USA, EUR, LOCALl I
I ‘----’ ---’ ‘ --------------------------------------- ‘ II

!G–– __ I

-. ---- — . — --- —-—
Hlgure5:AZby 3Kesultkkom S ELEC’1

AutomatedSQL Documentation 322 APL 91

DISPLAY DOCTABLE ‘INVENTORY1
.+--- ●

$Table SQLDBA.INVENTORY: Description and quantity for each partl

I 22 rows in 1 page; O rows overflowed I
10ne of 9 tables in PUBLIC dbspace PUBLIC.SAMPLE in pool 1 I
I 5 pages active (1%) of 512 pages total I
I 8 header pages, 33% index pages; 5% free; lock mode PAGE I
I I
I Column Column Allow INDEX Index I
lx Name Type Nulls 10000 6824 Remarks I
I I
11 PARTNO SMALLINT N u+ Part number I
12 DESCRIPTION VARCHAR(24) Y o ;+ Description I
13 QONHAND INTEGER Y o 2- Quantity I
t ---—_ . ____________________ - ___________________________________ I

Figure6:DOCTABLE AppliedtoaTable

DISPLAY DOCTABLE ‘ORDERS!
.+-- .

$View SQLDBA.ORDERS: Parts ordered with computed order valuel
I I
I SELECT NAME,ADDRESS,DESCRIPTION,PRICE*QONHAND I
I FROM SUPPLIERS,INVENTORY,QUOTATIONS I
I WHERE INVENTORY.PARTNO=QUOTATIONS.PARTNO I
I AND SUPPLIERS. SUPPNO=QUOTATIONS. SUPPNO I
I I
I Column Column Allow I
lx Name Type Nulls Remarks I
I I
II SUPPLIER NAME CHAR(15) Y From SUPPLIERS I
12 SUPPLIER ADDRESS VARCHAR(35) Y From SUPPLIERS I
13 PART DESCRIPTION VARCHAR(24) Y From INVENTORY I
14 PRICE * QONORDER DECIMAL(15,2) Y From QUOTATIONS I
I --------------- - - - - - - - - - ----------------------------------- I

Figure%DOCTABLE AppliedtoaView

Displaying a Table or View Table SQLDBA.INVENTORY:
Description and quantity. . .

The functionDOCTABLE (see Appendix) displays the
defmitionof stable or a view. For example, Figure6
shows the report generated when DOCTABLE is
applied to a sample table; Figure 7 shows a view.

ELEMENTS OF THE DOCTABLE REPORT

The tool has found that INVENTORY is a table and that
the creator is SQLDBA. Any comment defined onthe
table (by the SQL command “COMMENT ON
TABLE) is also displayed.

22 rows in 1 page
DOCTABLE IINVENTORY1

Invokes the tool. Notice that it is not necessaryto specify

the creator if there is only one table or view in the

database with the specified name. (Had more than one

been found, a message would list the possible creators.)

This indicates the number ofrows in the table and the
number of pages occupied by those rows. An SQLpage

is 4,096 bytes; this gives an ideaof the overall size of the

table.

APLQuoteQuad 323 Rexford H.Swain

O rows overflowed 33% index pages

This is a count of the number of rows in the table that
have overflowed from their original physical position
because VARCHAR or NULL columns grew (after use
of the “UPDATE command) and there was no more
room on their original pages.

The data in an overflowed row is divided between two
pages, requiring twice the disk 1/0 to access it. A value
of O is perfecc higher values indicate more overflow and
hence a potentially serious performance problem. A
table reorganization (see below) will consolidate
overflowed rows.

One of 9 tables
in PUBLIC dbspace PUBLIC. SAMPLE

in pool 1

The tool has found which dbspace the table is in, how

many tables are in it, and which storage pool it is in.

The number of tables in a dbspace can be significant.

IBM generally recommends that a large table be created

in its own dbspace.

Also, should it ever be necessary to drop the table, the

“DROP DBSPACE” command is much more efficient

than the “DROP TABLE command.

5 pages active (1%)
of 512 pages total

This gives an idea of how large the dbspace is, and how

close to full it is.

There is an incentive for using large dbspaces, since a

dbspace full error will bring an application to a dead halt,

and require the acquisition of a new larger dbspace and

moving the tables.

However, it is generally not a good idea to have a

dbspace that is much larger than necessary -- in some
circumstances this can mislead the SQL optimizer.

8 header pages

This indicates the number of pages reserved in the

dbspace for header information.

Eight pages is the default when a dbspace is acquired.

Once acquired, this parameter cannot be changed. Nor

have I ever seen it changed. You could experiment with

lower values, but the potential saving in disk space makes

it hardly worth the effort.

This means that a third of the pages in the dbspace are
reserved for index data. Most of the remaining two-
thirds will be used for row data.

33% is the default when a dbspace is acquired. If you

have only one or two indexes on each table in a dbspace,

you may be able to get by with a lower index percentage.

This would leave more pages for row data and thus

require fewer pages overall. The percentage of index

pages cannot be changed once a dbspace is acquired, so

some advance planning is necessary.

5% free

This means that 5% of each page in the dbspace will be

reserved. 159Z0is the default when a dbspace is acquired,

but this value may be changed at any time with the

“ALTER DBSPACE ... (PCTJ?REE = ...)” command.

One of the most common mistakes in SQL database

administration is to have a non-zero value here once an

application is in production. The idea is to acquire a

dbspace with a certain percentage of each page free, load

the rows into the table, and then set the percentage to

zero. During the load, SQL will reserve the specitled

percentage of each page, but if the percentage is never

reset to zero, SQL will continue to maintain that free

space, utterly wasting disk space.

After your inhial table load, set this percentage to zero --

then when new rows are inserted into the table, SQL will

try to use the free space to place the new rows in the

pages indicated by their clustering index values. (More

about clustering below.)

lock mode PAGE

This indicates that the dbspace will be locked at the page
level. The only other possible locking modes are row and
dbspace. This parameter is set when a dbspace is

acquired, and can later be changed with the “ALTER
DBSPACE command.

SQL defaults to page locking, and thk is generally a good

choice. IBM recommends using row level locklng only

when necessary.

A smaller locking unit is more precise, but requires SQL

to do more bookkeepin~ it can also cause lock

escalations, which can in turn cause deadlocks. A larger

locking unit is generally more efficient, but also increases

the chance of lock contention.

Automated SQL Documentation 324 APL 91

#

The columns of a SQL table are numbered in the order
that they were specified in the “CREATE TABLE
command.

The column numbers determine the sequence that the
columns will be returned in when a “SELECT * FROM’
command is performed.

Column Name, Column Type

These are the column names and types, as specified in
the “CREATE TABLE command.

Allow Nulls

If the “NOT NULL” clause was used when specifying a
column in the “CREATE TABLE command, an “N
appears here. The default is “Y”, meaning that nulls are
permitted.

The default is to allow nulls, but SQL generally performs
more efficiently if nulls are not permitted.

INDEX 10000, Index 6824

The report includes a column for each index on the table.
In this sample table, there are two indexes. The position
of two-character codes indicate which table columns are
involved in the indexes.

A letter marks the primary column of each index. A “U
indicates a unique inde~ a “D” means that the index
allows duplicates. An upper-case letter indicates that the
index is clustered; a lower-case letter indicates an
uncluttered index. (More about clustering below.)
Secondary columns involved in an index are numbered.
A “+” in&cates ascentig order (which is the default); a

“-“ means descending order. A “o” indicates that the

column to the left is not involved in the index.

In this sample table, the “U+” indicates that the first

index is a unique index on the PARTNO column in

ascending order, and that the index is currently clustered.

The “d+” indicates that the second index is a non-unique

index on the DESCRIPTION column in ascending order,

and that the index is currently not clustere~ the “2 -”

means that the secondary column in the same index is

QONHAND, in descending order. In other words, the

commands used to create the indexes on thk table were:

CREATE UNIQUE INDEX . . . ON 1NVENTORY(PARTNO)

CREATE INDEX . . . ON INVENTORY(DESCRIPTION, QONHANDDESC)

The fust index created on a table becomes what is known

as the “clustering index”. DOCTABLE indicates this
special index by displaying the word “INDEX in upper-
case letters in the column heading. (It is possible for a
table to have indexes but no clustering index! For
example, if the two indexes above were created and then
the f~st was dropped, the table would be left with one
index but no clustering index.)

When a “SELECT command without an “ORDER BY
clause is used, SQL uses the clustering index as the
“default” order to return rows in. As new rows are
inserted into a table, SQL attempts to keep the rows
physically ordered by the clustering inde~ using any
space left by PCTFREE. (Ideally, the clustering index
shouId be a unique index so that the preferred location of
each row can be precisely determined.) If there is no
more free space available (or if PCTFREE was never
lowered), SQL places new rows elsewhere, and thus a
table gradually becomes uncluttered.

When “UPDATE STATISTICS” is run, SQL notes

whether each index order matches the physical order.

The verdict is recorded in SYSINDEXES.CLUSTER

and is reflected in the upper- or lower-case letter in the

DOCTABLE report, (If the index is “clustered, an

upper-case “A or “D” appears; otherwise a lower-case

letter is used.)

To improve on this simplistic yes-or-no judgement,

SQL/DS version 2.2 introduced another statistic in

SYSINDEXES.CLUSTERRATIO that indicates the

degree to which each index is clustered. This value
ranges from O (worst) to 10000 (perfect), and appears at

the top of each index column in the report.

A table with a poor cluster ratio on the clustering index

should be reorganized.

Every table, no matter how small, should have at least

one index defined on it.

Every column that is used in a SQL join should have an

index defined on it.

Ideally, every table should have at least one unique index

defined on it, thus ensuring that each row can be

distinguished from all other rows. This also helps SQL
to exactly pinpoint the location of a row when the index
is used in a query.

The clustering index should be on the column(s) that is
(are) most frequently used in “WHERE” and “ORDER
BY’ clauses.

APL Quote Quad 325 Rexford H. Swain

Remarks

AIIy column remarks defined for the table will be
displayed here. These are set by the “COMMENT ON
COLUMN” command.

Table Reorganization

In order to “reorganize” a table, meaning to physically

reorder the rows in a table by the clustering inde% you

must unload all the rows and then reload them in index

order. Typically the SQL DBSU (Database Services

Utility) is used for this task.

A reorganization will re-cluster the rows and consolidate

overflowed rows. This is a complex area that should be

approached with caution. Briefly, you will get even

better results if you “DROP DBSPACE in the middle of

the process (shadow pages will be recovered) and re-

create indexes after reloading the rows.

CONCLUSION

I hope that DOCTABLE is useful to those pursuing the

elusive goal of self-documenting databases, if perhaps

only as a prototype.

Note that while SQL gives programmers the structure for

producing self-documenting tables and views, there is no

substitute for descriptive information supplied by the

designer -- DOCTABLE will yield its best results if the

SQL “COMMENT ON’ commands have been used to

describe tables and columns.

Other APL2 tools for displaying dbspaces and storage

pools are available from the author upon request or via

the APL91 software exchange.

I also hope that the brief coverage of SQL performance

issues will help alleviate some performance problems, or

at least raise awareness of thk complex but potentially

rewarding area.

ACKNOWLEDGEMENTS

I am indebted primarily to Bob Hendricks; and also to
Sherm Fowler, Robert Shaw, Joe Heise, and Mike
Teitelbaum; for sharing their SQLexperiencesfith me.

REFERENCES

APL2 Programming: Using Structured

IBM Order Number SH20-9217.

Nancy Wheeler, APL2 and SQL: A
Conference Proceedings.

Quey Language;

Tutonafi APL89

SQL/DS SQL Reference for IBM W Systems and VSE;

IBM Order Number SH09-8087.

SQL/DS Database Administration for IBM W Systems;

IBM Order Number GH09-8083.

SQL/DS System Administration for IBM H14 Systems;

IBM Order Number GH09-8084.

SQL/DS Interactive SQL Guide and Reference for IBM

JWSystems; IBM Order Number SH09-8085.

SQL/DS Database Services Utility for IBM PM Systems;

IBM Order Number SH09-8088.

Automated SQL Documentation 326 APL 91

[11
[21
[31
[41
[51
[61
[71
[81
[91
[101
[111
[121
[131
[141
[151
[161
[171
[181
[191
[201
[211
[221
[231
[241
[251
[261
[271
[281
[291
[301
[311
[321

[331
[341
[351
[361
[371
[381
[391
[401
[411
[421
[431
[441
[451
[461
[471
[481
[491
[501
[511

APPENDIX

V R+DOCTABLE TN;C;CH;CR;D;DQ;FMT;H;I ;IN;L;PL;PM;Q;S;T;UD;V;W;Y;UIO

R Show definition of an SQL table or view.
n Argument should be a table or view name with optional creator.
n Report width is limited to OPW.
n Requires function: SELECT

010+1

n Parse argument

TNe6GTN n Force to character vector

Ie(l+pTN)lTNLt . : FI Find creator.tname period
CR+I pTN n Creator (if specified)
TN~I $TN R Table name

R Get information about table or view

w+lTN~E=lll,TN,?lll , (O#pCR1/t AND CREATOR= ’tt,(-l$CRl ,tttt
T~lSySTEMoSYSCATALOG !

SeSELECT ‘SELECT * FROM1 T ‘WHERE1 W

a Verify that there i.s exactly one table with name as specified

lJES(OEpS1/tTable/view not found: ‘,CR,TN
QeS[;21 R CREATORS
OES[l#pQ)/lSpecify creator: :,3$c(C* or ‘),””(-–l+(Q=’ ‘~L””llJ-””Q

a Define some formatting utilities

R Delete trailing blanks and use double quotes if embedded blanks
Q+DFX ‘R+DQ A’ ‘R+(OV\@A#” “l/A’ ‘+(” “cR)$O’ ‘R~l@’’’’’’’’,R’

9 Format integer with commas; use ? if no UPDATE STATISTICS yet

Q+13FX IR+FMT Al IR+(l+AzO)=l:?ll(‘t555,555,5101t 5A) 1

‘Re(v\R#t I 11)/Rl

9 Format number and pluralize word
Q+OFX ‘R-N PL A’ ‘Re(-N=l).J(FMT N),tt ‘t,A1

n Initialize header section of report

S-,s f-a
(CR TNI+S[2 11 n
ye33s R
T+(’RV’tY)3’Table ‘ ‘View t Fl
T+T,(DQ CR), l.’,DQ TN R
T+T,?: 1,5=S R
H+cT R

+(Y=’Vt)pLl fl

T.+ I ‘,S[121PL ‘rows’
T+T,’ in ‘, (S[131PL ‘pagest), t; t
T+T,(s[151PL Irowsl), t overflowed
H+H , CT

Just one found
CREATOR, TNAME
TABLETYPE
R=table, V=view
Creator and table/view name
REMARKS
Initialize header

Branch if view

n ROWCOUNT
n NPAGES
n NOVERFLOW

APLQuoteQuad 327 RexfordH.Swain

[521
[531
[541
[551
[561
[571
[581
[591
[601
[611
[621
[631
[641
[651
[661
[671
[681
[691
[701
[711
[721
[731
[741
[751
[761
[771
[781
[791
[801
[811
[821
[831
[841
[851
[861
[871
[881
[891
[901
[911
[921
[931
[941
[951
[961
[971
[981
[991

n Add information about dbspace to header

T~lSySTEM. SySDBSPACES :
W+IDBSPACENO= i ,3S[6] R DBSPACENO
D+,SELECT ISELECT * FROMI T ‘WHERE! W

Q+D[51 fi NTABS
T+(21Q1210nly tablel(JOne of C,(6Q),1 tables!)
T+T,! in ‘ ,D[4101PUBLIC1 ‘PRIVATE! 9 DBSPACETYPE
TeT,t dbspace l,(DQ 3=ID), :.l,DQ l=D R OWNER, DBSPACENAME
T+T,! i.n pool ‘,6D[121 n POOL
H+H , CT

T.+ I I,(D[llIPL ‘pagesl), l active 1 n NACTIVE
T+T,l(’,(FMTl.5+100x+/D[ll 61),’%)’ n NACTIVE+NPAGES
T+T,! of 1,(D[61PL ‘pages:), f total! 9 NPAGES
H+H , CT

T+ I ‘,(D[71PL ‘header pagesl), l, 1 n NRHEADER
T+T,($D[81), I% index pages; I 9 PCTINDX
T+T,(3D[91) ,1% free; ‘ ~ FREEPCT
T+T, $lock mode ‘, (ISPTIL102D)21DBSPACEI *PAGE! ‘ROWI R LOCKMODE
HGH , CT

+L2 n Skip view definition

Ll: R View: show its defi.niti.on

T+IsYCJTEM.SYSVIEWS I

W+lVIE~~E= I I : ,TN, !!! AND VCREATOR=lrt,CR, ‘ttt

V+SELECT ‘SELECT * FROMt T ‘WHERE1 W ‘ORDER BY SEQNOI

I.+lsELEgIt IFROMI IWHEREI tANDt ~

IeI, ‘OR’ ‘GROUP BY’ ‘HAVING’ ‘ORDER
I.+! I,””I,””l I R

V+l$E! ‘,””V[;41 n
V+-14V R
V+(l+(TAS SELECTIGV)L1).JV R
I+?v/Ig””cV 9
We(l++\I)cV 9
I+IVO=13PW1 -l+eL-”p””W R
V+(l++\I]cV R
V’+(CI I),v n
H+H , V R

Key words for line breaks
BY1 t (SELECT1
Add leading/trai.limg blanks

Combine VIEWTEXT rows
Drop trailing semicolon
Drop CREATE VIEW . . . AS
Find any key word
Partition by key words
Fold each partition by IIPW
Re-parti-tion by keys and OPW
Add blank line
Add to header

L2 : R Get column information for table or view

[1001 T+lSYSTEM. SYSCOLUMNS 1
[101] W+ITNAME= l’!,TN, lII AND CREATOR= II I,CR, JIII
[1021 S+SELECT ISELECT * FROM’ T ‘WHERE’ W ‘ORDER BY COLNO’
[1031
[104IR Initialize column section of report
[1051
[1061 CH@2 1P” ‘x’ 9 Initialize column headings

Automated SQL Documentation 328 APL 91

[1071 ReS[; ,41
[1081 CHeCH,t l,””tColumnt ‘Namel
[1091 R+R,’ ‘,””S[;11
[1101 T*S[;51N””l t
[1111 L~S[;61N-”Ct ‘,1’OAV
[1121 Qe~(t#t””L,””J(l
[1131 Le(Qp”” ’(’),””L,-”Qp””’)l
[1141 CH+CH,S ‘,””lColumn$ ‘Type!
[1151 R-R,t ‘,”-T,..L
[1161 CHeCH,I I,”.IA1low1 ‘llullst

[1171 ReR,(c9 ‘), ..S[;81
[1181
[11919 Get index information
[1201
[1211 +(Y=tVJ)pL3
[1221 T+tSYSTEM. SYSINDEXESt

n
R

F4

R

F1

R

Fi

la

n
R

R

Init column report: COLNO
Add to column headings
Add CNAME to column report
COLTYPE without blanks
LENGTH “(6, 21f’ w/out blnks

Decimals already have parens
Wrap parens around others
Add to column headings
Combine, add to report
Add to column headings
Add NULLS to report

R Skip i.f view

[1231 IeSELECT ‘SELECT * FROM1 T ‘WHEREI W a Re-use WHERE clause
[1241 +(OepI)pL3 n Skip if no indexes
[1251
[1261Fi Format index information to align with column list.
[1271
[1281 CeeI[;71
[1291 Q+(tIndex! lINDEX1)[l+CCIFW1 1
[1301 Q+Q, [0.51-5T..6..I[;17I
[1311 CH+CH,l ‘,..Q
[1321 UDf=eI[;61
[1331 UD+tUDudl[(lUD1LUD)+2xC~ lWNII
[1341 IN+I[;51
[135] lNe(lN#t l)c.”IN

[1361 PMeT....IN
[1371 IN@INN.”””CCl+-, t
[1381 IeINt..cS[;ll
[1391 I+c..I
[1401 uD+I1l.TJD,..(’5 ’$--lJ”””p””IN)N) ,..’0’
[1411 PMeIU..PM,..l 1
[1421 IeQaUD,””..PM
[1431 ReR,(cJ ‘),..1
[1441
[1451L3: 9 Combine header with columns
[1461
[1471 CHeCH,’ ‘,..” ‘Remarks?
[1481 ReR,l ‘,--S[;91
[1491 R+CH, [lI(C’’),[1IR
[1501 R+1J[213R
[1511 H+oH,c”
[1521 W+OPWL-l~(pH)rpR
[1531 R+(WT[21H), [11W?[21R

v

R

la

FI

F!

FI

R

FI

R

9

R

FI

R

R

n
F1

F1

Clustering (:CNFW1)
Capi.tali.ze clustering index
Add CLUSTERRATIOs
Add to column headings
INDEXTYPE (IUD:) unique/dups
Lowercase if not clustered
COLNAMES (l+A, -B,!)
Nest by column
Extract +/- sort direction
Remove commas and +/-
Find column names in indexes
Need this twice
Extend Unique/Duplicates
Extend +/-
Glue together
Add to report

table, keep within 13PW

R Col heading for remarks
a Add column REMARKS
n Add column headings
a Column section of report
R Header section of report
~ Max width, but not > OPW
R Combine sections

APLQuoteQuad 329 Rexford H. Swain

