
Enhancing XEDIT as an APL Editor

Rexford H. Swain

Independent Consultant
8 South Street

Washington, CT 06793
(203) 868-0131
(212) 242-5816

ABSTRACT

While APL2 provides a built-in editor, under VM it also
offers a convenient interface to XEDIT, the VM system
editor. XEDIT is an incredibly powerful general-purpose
editor, well worth mastering for its many uses outside the
APL environment. But it is missing some facilities
specifically tailored for APL function editing. This paper
describes a solution to one specific deficiency: the lack of a
“name” or “whole word” change command. The XEDIT
macro presented here, CN (for “change name”), corrects the
problem and also offers an introduction to REXX, IBM’s
SAA command language, in a context familiar to APL’ers.

WHICH EDITOR?

The APL2 “) EDITOR” command allows each user to select
the editor that will be used as the “del” editor for editing
functions (and variables). In the VM environment, the two
significant choices are the native fullscreen editor (Editor 2)
and the VM system editor @EDIT). Since programmers
spend a tremendous amount of time using an editor, the
choice is important. And since each editor takes time to
learn, its power and range of applications must be carefully
considered.

Editor 2 provides features specific to APL but is only
available within APL. XEDIT is a far more robust
general-purpose editor. It’s also available throughout the
VM system, so all skills learned may be leveraged across the
full spectrum of VM applications. Since most mainframe
APL applications now interact with other external facilities,
non-APL skills are becoming essential for the APL
developer.

XEDIT allows the use of the VM system interpreter,
REXX, as its macro language. REXX is a command
language with all the power of a full-fledged programming
language, so there is virtually no limit to the capability of
XEDIT macros. In fact, entire applications can be
developed using REXX with XEDIT as a screen manager.
IBM has included REXX in its System Application
Architecture (SAA) specification, so any time invested in
mastering this language will be rewarded not only elsewhere
in VM but in other environments as well.

Permission to copy without fee all or part of this material is granted provided that
the copies are not nude or distributed for direct mmmerc&l advantage, the ACM
copyright notice and the title d the publication and its date appear, and nctioe is
given that copying is by permission of theAs.wctatian forComputing Machinery.
To copy otherwise, or to republish, mquires a fee and/or specific penn&sion.

Copyright 1989 ACM Cr87971-3W-2/OCQ6/0341$1.50

Unfortunately, there are a few weaknesses in XEDIT from
the point of view of an APL programmer. Presented here
is a solution for one of those weaknesses: the lack of a
“name” (sometimes called “whole word” or “token”) change
command.

WHOLE WORD CHANGES

The idea is to avoid accidentally changing one string to
another in an inappropriate context. For example, when
editing a document, we may want to change “data” to
“fact”, but we would not want to change “database” to
“f actbase”. PC word processing programs usually call
this filtering of matches a “whole word” change feature. It
is not sufficient to wrap spaces around the strings --
changing ” data ” to ” fact ” would change whole
words when they occurred in the middle of a sentence, but
would overlook occurrences at the beginning of a line and
when abutting punctuation, such as at the end of a
sentence.

When editing APL programs, this feature is even more
useful. The idea of a “word” must be augmented to include
any APL token (identifier name or numeric constant). The
following are examples of desirable behavior:

Change & In But Not In

data fact * the data’ ’ database’
DATA= FACT< +/ DATA=0 MYDATA=O
I J 1+1 IF
+19 +21 (AGE+19) YEAR+1900

With Editor 2, these changes can bc made by adding an “IV’
(for “name”) as a suffH to the change command (e.g.
It [/old/new/N] “). XEDIT does not directly support
such changes, but the CN macro presented here does.

The technique is to locate a raw match and then check the
edge characters. If the first character of the string is
possibly part of a name, then the preceding character
should not be; and if the last character of the string is
possibly part of a word, then the following character should
not be.

For example, suppose we want to verify an occurrence of
the string “DATA=“. Because the first character of the
string is a letter (part of a name), the preceding character
must not be -- “...+/DATA=..!’ would satisfy the rule, but
not “...t%YDATA=...“. Since the string ends with a symbol
(which cannot possibly be part of a name), we don’t care
what the following character is -- either “...DATA=+/B...”
or “...DATA=B...” would qualify.

APL QUOTE QUAD 341 Rex Swain

SYNTAX

CN’s behavior is exactly the same as XEDIT’s native
CHANGE command except that matches are not changed if
they begin or end in the middle of a token. CN’s syntax,
like CHANCiE’s, is:

CN/ old./ new/ target p q

Where...

CN

/

old

new

target

P

9

Name of the macro.

Delimiter. Any character not occurring in
old or new may be used.

String to be changed. If empty, the new
string is inserted at the beginning of lines.

Replacement string. If empty, the old string
is deleted.

Specilles the end of line range to be searched
(range begins at current line). Default is 1.

Number of occurrences per line to change, or
“*” meaning all. Default is 1.

Relative number of first occurrence to change
on each line. Default is 1.

The target can be one of...

Absolute line number:

:5

Relative displacement from current line:

-5 above current line
5 plus assumed

4-5 below current line

File line range:

,* top of file
* plus assumed

+* end of file

Line name:

. foo

String expression:

/foe/ simple
/a/&y/b/ complex

The search scope is from the current line to, but not
including, the line specified by the target.

Enhancing XEDIT As An APL Editor 342

MACRO HIGHLIGHTS

REXX code is remarkably easy to read. Comments begin
with “/*” and end with “*/“. There is no assignment
arrow, but variable assignments with the more traditional
“=” are unmistakable. And only APL’ers have any difficulty
recognizing “* ” and “/ ” as multiplication and division.
Logical and is “&“; or is ” 1 “; not is “+. Catenation may be
performed with ” 1 1 ” or simple abuttal. An array name
and subscript are separated by a period.

The control structures, such as “if . ..then...else...“. are
easily understood. The “do while...” instruction uses a
leading test; “do until...” defers the test until the end of
the block. The “do forever” construct is terminated by
a “leave” instruction.

Most statements are executed by the REXX interpreter.
Quoted strings are taken literally (not subject to variable
resolution). Strings not recognized by REXX (such as
’ * COMMAND LOCATE' target”) are directed to the
calling environment (XEDITJ Other macros may be called
as subroutines (” ’ MACRO PARSE ..! ").

As in APL, logical tests return boolean values. But there is
little usage distinction between datatypes. Values may be
used in either a numeric or character context and are
converted accordingly.

Order of execution takes some getting used to for an
APL’er, but is well documented and usually works in a
seemingly natural way. Evaluation is left to right, with the
following precedence: prefixes, exponentiation,
multiplication and division, addition and subtraction,
concatenation, comparisons, and, or. [Sigh; memorization is
hopeless -- a crib sheet is the only solution.] Parentheses
may be used, or course, to force (and/or clarify) order of
execution.

A variety of built-in functions are available. Arguments
(sometimes more than two!) are passed within parentheses,
separated by commas. The functions “push” and “pull”
write and read from a stack; here they are used to
communicate with the "PARSE" macro, an IBM-supplied
utility which helps to parse CN’s argument. The “parse”
instruction is a remarkably useful tool which separates
strings into several values. The function “subs tr’ indexes
sub-strings from strings, %I trip” removes blanks, “index”
is like dyadic iota (but returns zero when not found),
“length” is like shape, “dels tr” deletes sub-strings,
“left” is like positive take, “right” is like negative take,
and “x2c” converts hex values to characters. There are
about 60 more REXX functions not used in CN.

XEDIT, like APL, allows the programmer to query and
change almost every aspect of its execution environment
with the "EXTRACT" and "SET" commands. (Variables
such as “line. 1” and "target. 2" are set by
"EXTRACT".)

APL89

CONCLUSION SEE ALSO

The CN macro does not, of course, make up for all of
XEDIT’s shortcomings as an APL editor. But since each of
us wants different things from an editor, a good editor must
be customizable, and CN demonstrates that XEDIT may be
enhanced to suit our various needs.

Weintraub, David M.; APL2 and the CMS System:
Exploiting the APL2&EXX Connection; APL88 Conference
Proceedings.

Brenner, Norman; Editing APL Objects With CMS XEDlT
APL84 Conference Proceedings.

I hope this glimpse of the potential of XEDIT and REXX
will serve as an enticement to learn and use tools outside
the APL environment.

APL89 SOFI-WARE EXCHANGE

CN and a few more related name locate/change macros are
available via the APL89 software exchange:

Macro Like IBM’s Purnose

CN CHANGE Change Name.

LN LOCATE Locate Name.

CLN

ALLN

CLOCATE Column Locate Name.

ALL Uses LN rather than
LOCATE.

SCHANGE SCHANGE Accepts LN or CLN, in
addition to LOCATE or
CLOCATE, on command
line.

Each macro contains comments explaining its function.

ACKNOWLEDGEMENTS

I am indebted to Bob Hendricks for revealing the full depth
of XEDIT and for patiently answering numerous questions
about REXX

Thanks also to Roy Sykes for a utility function named
"SESEARCH" (for “syntactic element search”) on the
Scientific Time Sharing Corporation system (circa 1974)
which was my first exposure to this concept in its APL
context.

REFERENCES

APL2 Language Reference; IBM Order Number
SH20-9227. (See chapter 8 for information on editors.)

VM System Product Interpreter User’s Guide; IBM Order
Number SC24-5238.

VM System Product Interpreter Reference; IBM Order
Number SC245239.

VM System Product Editor User’s Guide; IBM Order
Number SC24-5220.

VM System Product Editor Command and Macro
Reference; IBM Order Number SC24-5221.

APL QUOTE QUAD 343 Rex Swain

/’ --- l /
/* CN XEDIT: like XEDIT's Change command but won't break Names l /
/* Syntax is same as change command: CN/old/new/target p q l /
/* Effect similar to APL2 Editor 2's change command "N" suffix l /
/* E.g., CN/DATA/FACT/ will change *+DATA=" but not "+RYDATA=" l /
/* Also good for "whole word only" changes in text files l i
/* Rex Swain, New York City, 24 January 1989 l /
/+ --- */

parse arg args /* all arguments l /
if args = 1' then /* empty? */

exit errmsg(5,' Missing operands') /* scold user l /

i* ----- Use IBM's PARSE macro to help parse argument -------- l i

push args
'MACRO PARSE 1 Dblstring Target Line' /* see HELP XEDIT PARSE */

if rc > 1 then
exit errmsg(rc,' Invalid operand')

pull n

pull d
parse var d 61 d.2 d.3 d.4 d.5 d.6
de1 = substr(args,d. 1,l)
old = substr(args,max(l,d. 3),d.4)
new = substr(args,max(l,d. 5),d.6)

/* dblstring */

if n >= 2 then do
pull t
parse var t t.1 t.2
target = substr(args,t.l,t. 2)
end

else
target = '1

/* delimiter */
/* old string */
/* new string */

/* target l i

i* target *i

if n >= 3 then do
pull 1
parse var 1 1.1 1.2

i* line l i

pqx = substr(args,l.l,l.2)
end

else
pqx = I*

/* p and q */

i* ----- Parse and verify p and q ---------------------------- *i

wx = strip(pqx)
if a -I = target , /* change command allows "- *" l i

& 1*’ = left(pqx,l) then do /* as a target, but PARSE sees l i
target = '-•' i* just "-"; so shift l *" from l i
pqx = strip(substr(pqx,2)) /* pqx into target *i
end

if I** = left(pqx,l) then i* change command allows "*l*; *i
pqx = ' l ' substr(pqx,2) /* force "* 1" so it'll parse */

parse var pqx p q x

exit targex(rc,'Invalid target:' target)
/* TOF or EOF reached? *i
i* where are we now? l i
/* target below original */
i* adjust up *i
i* first line to search */
/* last line to search *i

tofeof = rc = 1
'COMMAND EXTRACT /LINE'

if line.1 >= origline then do
targline = line.1 - 1
topline = origline
botline = targline
end

else do
targline = line.1 + 1
topline = targline
botline = origline
end

'COMMAND LOCATE :'topline
'COMMAND CLOCATE :Q'

i* target above orisinal l i
i* adjust down -
/* first line to search
i* last line to search

/* start at higher line
i* be sure to hit co1 1

changed = 0 /* count occurrences...
lines = 0 i* . . . and lines changed
prevline = 0 i* force -E below

l i
l i
l i

l i
*/

*i
*i
l i

alph = *ABCDEFGHIJKLMNOPQRSTUVWXYZ'
'abcdefghijklxmopqrstuvwxyx'
'0123456789 '

x2c('41 42 43 4r 45 46 47 48 49'
'51 52 53 54 55 56 57 58 59'

I I :
II 1

I

if target = *' then target = '1' i* default is current line */
if p =*I thenp ~‘1’ i* default is once per line l /
if q =I* thenq ~‘1’ i* default is first occurr */

if p -c ‘t’ & 7 datatype(p,'Ehble') then
exit errmsg(S,'Invalid occurrences per line:' p)

if old == 9 1 &(p>ll p='*') then
exit errmsg(5,' Invalid occurrences per line' ,

'(when old string empty):' p)

if 1 datatype(q,'Whole') then
exit errmsg(5, 'Invalid relative first occurrence:' q)

if x -= " then
exit errmsg(5,' Superfluous operand:' strip(x))

if old == " & new == '* then exit i* change exits quietly l i

i* ----- Establish local environment; verify target -------a-- */

'conmm EXTRACT /LINE/C~LU~/~/~O~ODE/~TAY/C~E~ 11 ,
~ALT/ZONE~SPAN~VARBLANK~STREAPI

origline = line.1
'COMMAND SET MSGMODE OFF'
'COMMAND SET WRAP OFF'
'COMMAND LOCATE' target

if rc = 2 then

i* drop bread crumb l i
i* quiet l i
i* targets don't wrap *i
/* try finding target l i

exit targex(rc,'Target not found:' target)
if rc = 5 then

'62 63 64 65 66 67 68 69 BB FC 90 AO')

D /* To detect APL names, the three lines above add underscored l /

P /* A to 2, delta, underscored delta, quad, and high minus. */

D
/* Specified in hex to facilitate up/downloading of this file. l /

5 clarg = dell 1014 1 de1 /* clocate argument l /

id
charg = dell 1014 I dell I ned I de1 /* change argumsnt */

0 lnew = length(new) - 1 /* advance after change l /

E first = 0 = index(alph,left(old,l)) /* first char not alph? l /
last = 0 = index(alph,right(old,l)) /* last char not alph? l /

'COMMAND SET CASE' case.1 'RESPECT' /* change has respect... l /
'COMMAND SET SPAN OFF' I* does not span l /
'COMNAND SET VARBLANK OFF' /* ignores varblank on l /
'COMRAND SET STREAM ON' /* ignores stream off */

if p = '*I then limit = 999999999 /* change all on a line l /
else limit= p + q /* last occurr to change l /

/* ----- Begin locate/examine/change loop -------------------- l /

do forever /* well, until leave l /

'COMMAND CLOCATE’ clarg /* raw clocate l /
if rc -= 0 then leave /* rc=2 means not found */

'CORMAND EXTRACT /TARGET/CDWNE* /* where is hit? l /
if target.1 > botline then leave /* beyond target? l /

/’ ----- Does hit qualify as a *name"? ----------------------- */

text = curline. /* text of current line l /
left = target.2 /* index of first char l /
right = target.4 /* index of last char l /
prev = substr(* 'text,left,l) /* char before old */
next = substr(text,,right+l,l) /* char after old l /

name = (first
I

O=index(alph,prev)) ,
C (last O=index(alph,next))

I* ----- Change if a nane and count within limits ------------ l /

if name then do

if prevline q= target.1 then do
prevline = target.1
hits = 0
end

hits = hits + 1
if hits >= q 6 hits < limit then do

'COMMAND SET ZONE' target.2 zone.2
'CORMAND CEANGE' charg
'COMMAND SET ZONE' zone.1 zone.2
'COMMAND CLOCATE :-left + lnew

/* hit new line? l /
/* swap l /
/* restart count l /

/* hits this line l /
/* within limits? */
/* restrict zone l /
/* change it1 l /
/* restore zone */
/* skip over new l /

changed = changed + 1
lines = lines + (hits = q)
end

/* hits changed */
/* lines changed l /

end /* end if syn l /

end /* end do forever *I

/* ----- End loop, exit with status message ------------------ l /

if changed = 0 then exit restex(4,'No lines changed')
'COMMAND SET ALT' l+alt.l l+alt.2

exit restex(O,, changed left('occurrences',ll-(changed=l)) ,
'changed on' lines left('lines',5-(lines=l)))

/* ----- restex: Restore environment prior to exit ----------- */

restex: parse arg xrc,emsg,msg

'COMMAND SET WRAP 1 wrap1 /+ restore... *I
'COMMAND SET MSGMODE ' mgmode.l
'COMMAND SET STAY ' stay.1
'COMMAND SET CASE * case.1 case.2
'COMMAND SET SPAN ’ Sp.3h.1

'CORMAND SET W&BLANK' varblank.l
'CORMAND SET STREAM ' stream.1 /* . . . environment l /

'COMMAND CLCCATE :'colunu.l /* always restore co1 l /
if stay.1 = 'ON' then /* if stay on l /

'CORRAND LOCATE :'origline /* original line */
else I* if stay off */

if tofeof then /* last line examined: l /
'COMMAND LOCATE' target /* target itself... l /

else /* . . . or.. . */
'COMMAND LOCATE :'targline /* . . . target +I- 1 l /

if emsg f= " then return errmsg(xrc,emsg) I* error message l /
'COMMAND HSG' msg /* normal message l /

return xrc

/* ----- targex: Target problem prepare to exit ------------- l /

targex: parse arg xrc,emsg

'COMMAND SET WRAP ' wrap.1 /* restore... */
' CORMAND SET MSGMODE' zmgzwde.l /* . . . environment */

return errrnsg(xrc,emsg) /* return rc for exit */

/* ----- errmsg: Display error message and original command -- */

errmsg: parse arg xrc,emsg

'COMMAND EMSG' emsg /* display error msssage l /
parse source cmd . /* name/syn of this macro */

'COMMAND CWSG' cmd args /* redisplay with arguments */
return xrc /* return rc for exit */

